Source code for minerva.models.nets.conv_autoencoders_encoders

import torch
from numpy import linspace
from typing import Callable, List, Optional

[docs] class ConvTAEEncoder(torch.nn.Module): def __init__( self, in_channels: int=6, time_steps: int=60, encoding_size: int=256, fc_num_layers: int=3, conv_num_layers: int=3, conv_mid_channels: int=12, conv_kernel: int=5, conv_padding: int=0, ): """ An encoder for a simple convolutional autoencoder. Parameters ---------- in_channels : int, optional Number of channels of the input that the model receives, by default 2 time_steps : int, optional Number of time steps of the input that the model receives, by default 60 encoding_size : int, optional Size of the data representation generated by the model, by default 256 fc_num_layers : int, optional Number of fully connected layers, by default 3 conv_num_layers : int, optional Number of convolutional layers, by default 3 conv_mid_channels : int, optional Number of channels used for in_channels and out_channels in the convolutional layers, except in the first, by default 12 conv_kernel : int, optional Size of the convolutional kernel, by default 5 conv_padding : int, optional Padding used in the convolutional layers, by default 0 """ super(ConvTAEEncoder, self).__init__() # Saving parameters self.in_channels = in_channels self.time_steps = time_steps self.encoding_size = encoding_size self.fc_num_layers = fc_num_layers self.conv_num_layers = conv_num_layers self.conv_mid_channels = conv_mid_channels self.conv_kernel = conv_kernel self.conv_padding = conv_padding # Simulation function def l_out(l_in, kernel, padding, stride=1): return (l_in - kernel + 2 * padding) // stride + 1 # Defining layers layers = [] # Convolutional layers conv_input_channels = in_channels current_time_steps = self.time_steps for _ in range(conv_num_layers): layers.append(torch.nn.Conv1d(conv_input_channels, conv_mid_channels, conv_kernel)) layers.append(torch.nn.ReLU()) conv_input_channels = conv_mid_channels # Updating L_out current_time_steps = l_out(current_time_steps, self.conv_kernel, self.conv_padding) # Fully connected layers layers.append(torch.nn.Flatten()) current_size = current_time_steps * conv_mid_channels linear_dimensions = linspace(current_size, encoding_size, fc_num_layers + 1).astype(int) for i in range(fc_num_layers): layers.append(torch.nn.Linear(linear_dimensions[i], linear_dimensions[i + 1])) layers.append(torch.nn.ReLU()) # Removing last ReLU layers.pop() # Creating model self.model = torch.nn.Sequential(*layers)
[docs] def forward(self, x): return self.model(x)
[docs] class ConvTAEDecoder(torch.nn.Module): def __init__( self, target_channels: int=6, target_time_steps: int=60, encoding_size: int=256, fc_num_layers: int=3, conv_num_layers: int=3, conv_mid_channels: int=12, conv_kernel: int=5, conv_padding: int=0, ): """ A decoder for a simple convolutional autodecoder. Parameters ---------- target_channels : int, optional Number of channels of the output that the model should target to, by default 6 target_time_steps : int, optional Number of time steps of the output that the model should target to, by default 60 encoding_size : int, optional Size of the data representation received by the model, by default 256 fc_num_layers : int, optional Number of fully connected layers, by default 3 conv_num_layers : int, optional Number of convolutional layers, by default 3 conv_mid_channels : int, optional Number of channels used for in_channels and out_channels in the convolutional layers, except in the last, by default 12 conv_kernel : int, optional Size of the convolutional kernel, by default 5 conv_padding : int, optional Padding used in the convolutional layers, by default 0 """ super(ConvTAEDecoder, self).__init__() # Saving parameters self.target_channels = target_channels self.target_time_steps = target_time_steps self.encoding_size = encoding_size self.fc_num_layers = fc_num_layers self.conv_num_layers = conv_num_layers self.conv_mid_channels = conv_mid_channels self.conv_kernel = conv_kernel self.conv_padding = conv_padding # Simulation function def convtranspose1d_input_required(target_output, kernel, padding): return target_output + 2 * padding - kernel + 1 # Defining layers layers = [] required_output = self.target_time_steps required_input = required_output output_channels = self.target_channels for _ in range(conv_num_layers): required_input = convtranspose1d_input_required(required_output, conv_kernel, conv_padding) layers.append(torch.nn.ConvTranspose1d(self.conv_mid_channels, output_channels, kernel_size=conv_kernel, padding=conv_padding)) layers.append(torch.nn.ReLU()) output_channels = self.conv_mid_channels required_output = required_input # Layer to resize it to the correct shape layers.append(torch.nn.Unflatten(1, (self.conv_mid_channels, required_output ))) # Fully connected layers linear_dimensions = linspace(self.encoding_size, required_input * self.conv_mid_channels, fc_num_layers + 1).astype(int) # Reverse the list linear_dimensions = linear_dimensions[::-1] for i in range(fc_num_layers): layers.append(torch.nn.Linear(linear_dimensions[i + 1], linear_dimensions[i])) layers.append(torch.nn.ReLU()) # Removing last ReLU layers.pop() # Inverting layers layers = layers[::-1] # Creating model self.model = torch.nn.Sequential(*layers)
[docs] def forward(self, x): return self.model(x)