Source code for minerva.models.nets.image.unet

""" Full assembly of the parts to form the complete network """

from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F

from minerva.models.nets.base import SimpleSupervisedModel

""" -------------- Parts of the U-Net model --------------"""


[docs] class _DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" """ Performs two convolutions with the same number of input and output channels, followed by batch normalization and ReLU activation """ def __init__(self, in_channels, out_channels, mid_channels=None): """ Parameters ---------- in_channels : int Number of input channels, i.e. the number of channels in the input image (1 for grayscale, 3 for RGB) out_channels : int Number of output channels, i.e. the number of channels produced by the convolution mid_channels : int, optional Number of channels in the middle, by default None """ super().__init__() if not mid_channels: mid_channels = out_channels self.double_conv = nn.Sequential( nn.Conv2d( in_channels, mid_channels, kernel_size=3, padding=1, bias=False ), # no need to add bias since BatchNorm2d will do that nn.BatchNorm2d(mid_channels), # normalize the output of the previous layer nn.ReLU( inplace=True ), # inplace=True will modify the input directly instead of allocating new memory nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), )
[docs] def forward(self, x): return self.double_conv(x)
[docs] class _Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), _DoubleConv(in_channels, out_channels) )
[docs] def forward(self, x): return self.maxpool_conv(x)
[docs] class _Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels, bilinear=True): super().__init__() # if bilinear, use the normal convolutions to reduce the number of channels if bilinear: self.up = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) self.conv = _DoubleConv(in_channels, out_channels, in_channels // 2) else: self.up = nn.ConvTranspose2d( in_channels, in_channels // 2, kernel_size=2, stride=2 ) self.conv = _DoubleConv(in_channels, out_channels)
[docs] def forward(self, x1, x2): x1 = self.up(x1) # input is CHW (channel, height, width) diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] # pad the input tensor on all sides with the given "pad" value x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) # if you have padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd x = torch.cat([x2, x1], dim=1) return self.conv(x)
[docs] class _OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(_OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
[docs] def forward(self, x): return self.conv(x)
""" -------------- The U-Net model --------------"""
[docs] class _UNet(torch.nn.Module): """Implementation of U-Net model.""" def __init__( self, n_channels: int = 1, bilinear: bool = False, ): """Implementation of U-Net model. Parameters ---------- n_channels : int, optional Number of input channels, by default 1 bilinear : bool, optional If `True` use bilinear interpolation for upsampling, by default False. """ super().__init__() factor = 2 if bilinear else 1 self.n_channels = n_channels self.bilinear = bilinear self.inc = _DoubleConv(n_channels, 64) self.down1 = _Down(64, 128) self.down2 = _Down(128, 256) self.down3 = _Down(256, 512) self.down4 = _Down(512, 1024 // factor) self.up1 = _Up(1024, 512 // factor, bilinear) self.up2 = _Up(512, 256 // factor, bilinear) self.up3 = _Up(256, 128 // factor, bilinear) self.up4 = _Up(128, 64, bilinear) # self.outc = (OutConv(64, n_classes)) self.outc = _OutConv(64, 1)
[docs] def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) logits = self.outc(x) return logits
[docs] class UNet(SimpleSupervisedModel): """This class is a simple implementation of the U-Net model, which is a convolutional neural network used for image segmentation. The model consists of a contracting path (encoder) and an expansive path (decoder). The contracting path follows the typical architecture of a convolutional neural network, with repeated applications of convolutions and max pooling layers. The expansive path consists of up-convolutions and concatenation of feature maps from the contracting path. The model also has skip connections, which allows the expansive path to use information from the contracting path at multiple resolutions. The U-Net model was originally proposed by Ronneberger, Fischer, and Brox in 2015. This architecture, handles arbitrary input sizes, and returns an output of the same size as the input. The expected input size is (N, C, H, W), where N is the batch size, C is the number of channels, H is the height of the input image, and W is the width of the input image. Note that, for this implementation, the input batch is a single tensor and not a tuple of tensors (e.g., data and label). Note that this class wrappers the `_UNet` class, which is the actual implementation of the U-Net model, into a `SimpleReconstructionNet` class, which is a simple autoencoder pipeline for reconstruction tasks. References ---------- Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing, 2015. """ def __init__( self, n_channels: int = 1, bilinear: bool = False, learning_rate: float = 1e-3, loss_fn: Optional[torch.nn.Module] = None, **kwargs, ): """Wrapper implementation of the U-Net model. Parameters ---------- n_channels : int, optional The number of channels of the input, by default 1 bilinear : bool, optional If `True` use bilinear interpolation for upsampling, by default False. learning_rate : float, optional The learning rate to Adam optimizer, by default 1e-3 loss_fn : torch.nn.Module, optional The function used to compute the loss. If `None`, it will be used the MSELoss, by default None. kwargs : Dict Additional arguments to be passed to the `SimpleSupervisedModel` class. """ super().__init__( backbone=_UNet(n_channels=n_channels, bilinear=bilinear), fc=torch.nn.Identity(), loss_fn=loss_fn or torch.nn.MSELoss(), learning_rate=learning_rate, flatten=False, **kwargs, )