import warnings
from typing import Optional, Tuple
import torch.nn as nn
import torch.nn.functional as F
[docs]
def resize(
    input,
    size=None,
    scale_factor=None,
    mode="nearest",
    align_corners=None,
    warning=True,
):
    if warning:
        if size is not None and align_corners:
            input_h, input_w = tuple(int(x) for x in input.shape[2:])
            output_h, output_w = tuple(int(x) for x in size)
            if output_h > input_h or output_w > output_h:
                if (
                    (output_h > 1 and output_w > 1 and input_h > 1 and input_w > 1)
                    and (output_h - 1) % (input_h - 1)
                    and (output_w - 1) % (input_w - 1)
                ):
                    warnings.warn(
                        f"When align_corners={align_corners}, "
                        "the output would more aligned if "
                        f"input size {(input_h, input_w)} is `x+1` and "
                        f"out size {(output_h, output_w)} is `nx+1`"
                    )
    return F.interpolate(input, size, scale_factor, mode, align_corners) 
[docs]
class Upsample(nn.Module):
    def __init__(
        self, size=None, scale_factor=None, mode="nearest", align_corners=None
    ):
        super().__init__()
        self.size = size
        if isinstance(scale_factor, tuple):
            self.scale_factor = tuple(float(factor) for factor in scale_factor)
        else:
            self.scale_factor = float(scale_factor) if scale_factor else None
        self.mode = mode
        self.align_corners = align_corners
[docs]
    def forward(self, x):
        if not self.size:
            size = [int(t * self.scale_factor) for t in x.shape[-2:]]
        else:
            size = self.size
        return resize(x, size, None, self.mode, self.align_corners)