minerva.analysis.metrics.pixel_accuracy ======================================= .. py:module:: minerva.analysis.metrics.pixel_accuracy Classes ------- .. autoapisummary:: minerva.analysis.metrics.pixel_accuracy.PixelAccuracy Module Contents --------------- .. py:class:: PixelAccuracy(dist_sync_on_step = False) Bases: :py:obj:`torchmetrics.Metric` Base class for all metrics present in the Metrics API. This class is inherited by all metrics and implements the following functionality: 1. Handles the transfer of metric states to the correct device. 2. Handles the synchronization of metric states across processes. 3. Provides properties and methods to control the overall behavior of the metric and its states. The three core methods of the base class are: ``add_state()``, ``forward()`` and ``reset()`` which should almost never be overwritten by child classes. Instead, the following methods should be overwritten ``update()`` and ``compute()``. Args: kwargs: additional keyword arguments, see :ref:`Metric kwargs` for more info. - **compute_on_cpu**: If metric state should be stored on CPU during computations. Only works for list states. - **dist_sync_on_step**: If metric state should synchronize on ``forward()``. Default is ``False``. - **process_group**: The process group on which the synchronization is called. Default is the world. - **dist_sync_fn**: Function that performs the allgather option on the metric state. Default is a custom implementation that calls ``torch.distributed.all_gather`` internally. - **distributed_available_fn**: Function that checks if the distributed backend is available. Defaults to a check of ``torch.distributed.is_available()`` and ``torch.distributed.is_initialized()``. - **sync_on_compute**: If metric state should synchronize when ``compute`` is called. Default is ``True``. - **compute_with_cache**: If results from ``compute`` should be cached. Default is ``True``. Initializes a PixelAccuracy metric object. Parameters ---------- dist_sync_on_step: bool, optional Whether to synchronize metric state across processes at each step. Defaults to False. .. py:method:: compute() Computes the pixel accuracy. Returns: float: The pixel accuracy. .. py:method:: update(preds, target) Updates the metric state with the predictions and targets. Parameters ---------- preds: torch.Tensor The predicted tensor. target: torch.Tensor The target tensor.