minerva.analysis.model_analysis =============================== .. py:module:: minerva.analysis.model_analysis Classes ------- .. autoapisummary:: minerva.analysis.model_analysis.TSNEAnalysis minerva.analysis.model_analysis._ModelAnalysis Module Contents --------------- .. py:class:: TSNEAnalysis(label_names = None, height = 800, width = 800, text_size = 12, title = None, x_axis_title = 'x', y_axis_title = 'y', legend_title = 'Label', output_filename = 'tsne.png', seed = 42, n_components = 2) Bases: :py:obj:`_ModelAnalysis` Perform t-SNE analysis on the embeddings generated by a model. A t-SNE plot is generated using the embeddings and saved in the `path` directory. The plot is saved as a PNG image file. Plot a t-SNE plot of the embeddings generated by a model. Parameters ---------- label_names : Optional[Dict[Union[int, str], str]], optional Labels to use for the plot, instead of the original labels in the data (`y`). The keys are the original labels and the values are the new labels to use in the plot. If None, the original labels are used as they are. By default None height : int, optional Height of the figure, by default 800 width : int, optional Width of the figure, by default 800 text_size : int, optional Size of font used in plot, by default 12 title : str, optional Title of graph, by default None x_axis_title : str, optional Name of x-axis, by default "x" y_axis_title : str, optional Name of y-axis, by default "y" legend_title : str, optional Name for legend title, by default "Label" output_filename : PathLike, optional Name of the output file to save the plot as a PNG image file. The file will be saved in the `path` directory with this name. By default "tsne.png" seed : int, optional Random seed for t-SNE, by default 42 n_components : int, optional Number of components to use in t-SNE, by default 2 .. py:method:: compute(model, data) .. py:attribute:: height :value: 800 .. py:attribute:: label_names :value: None .. py:attribute:: legend_title :value: 'Label' .. py:attribute:: n_components :value: 2 .. py:attribute:: output_filename .. py:attribute:: seed :value: 42 .. py:attribute:: text_size :value: 12 .. py:attribute:: title :value: None .. py:attribute:: width :value: 800 .. py:attribute:: x_axis_title :value: 'x' .. py:attribute:: y_axis_title :value: 'y' .. py:class:: _ModelAnalysis(path = None) Main interface for model analysis. A model analysis is a post-training analysis that can be run on a trained model to generate insights about the model's performance. It has a `path` attribute that specifies the directory where the analysis results will be saved. The `compute` method should be implemented by subclasses to perform the actual analysis. All insights generated by the analysis should be saved in the `path` directory. Note that, differently from `Metric`, `_ModelAnalysis` does not return any value. Instead, the results of the analysis should be saved in the `path` directory. All subclasses of `_ModelAnalysis` should implement the `compute` method. Inside a pipeline the path will be automatically set to the `pipeline.log_dir` attribute. .. py:attribute:: _path :value: None .. py:method:: compute(model, data) :abstractmethod: .. py:property:: path