minerva.data.readers ==================== .. py:module:: minerva.data.readers Submodules ---------- .. toctree:: :maxdepth: 1 /autoapi/minerva/data/readers/base_file_iterator/index /autoapi/minerva/data/readers/csv_reader/index /autoapi/minerva/data/readers/index_reader/index /autoapi/minerva/data/readers/mdio_reader/index /autoapi/minerva/data/readers/multi_reader/index /autoapi/minerva/data/readers/patched_array_reader/index /autoapi/minerva/data/readers/png_reader/index /autoapi/minerva/data/readers/reader/index /autoapi/minerva/data/readers/tabular_reader/index /autoapi/minerva/data/readers/tiff_reader/index /autoapi/minerva/data/readers/zarr_reader/index Classes ------- .. autoapisummary:: minerva.data.readers.LazyPaddedPatchedArrayReader minerva.data.readers.LazyPaddedPatchedMDIOReader minerva.data.readers.LazyPaddedPatchedZarrReader minerva.data.readers.NumpyArrayReader minerva.data.readers.PNGReader minerva.data.readers.PatchedArrayReader minerva.data.readers.PatchedMDIOReader minerva.data.readers.PatchedZarrReader minerva.data.readers.TiffReader minerva.data.readers._Reader Package Contents ---------------- .. py:class:: LazyPaddedPatchedArrayReader(data, data_shape, stride = None, pad_width = None, pad_mode = 'constant', pad_kwargs = None) Bases: :py:obj:`PatchedArrayReader` Reads patches from a NumPy array. This class is a subclass of `PatchedArrayReader` and is designed to perform padding only when the patch consumed by `__get_item__` is in a region that uses the padding (boundary regions). If no padding is necessary, use PatchedArrayReader. Reads data from a NumPy array and generates patches from it. Parameters ---------- data : ArrayLike The input array from which patches are generated. data_shape : Tuple[int, ...] The shape of the patches to be extracted. This will be the shape of the subarray that is returned when a patch is accessed using __getitem__. stride : Tuple[int, ...], optional The stride between consecutive patches. If `None`, the stide will be the same as `data_shape`. By default None pad_width : Tuple[Tuple[int, int], ...], optional The width of padding to be applied to the data array. By default `None`, that is, no padding is applied. Check the documentation of `numpy.pad` for more information. pad_mode : str, optional The padding mode, by default "constant". Check the documentation of `numpy.pad` for more information. pad_kwargs : dict, optional Additional keyword arguments for padding, by default None Examples -------- ```python >>> import numpy as np >>> # Generate a 10x10 array >>> data = np.arange(100).reshape(10, 10) >>> # Create a reader that generates 5x5 patches with a stride of 2 in the >>> # first dimension and 5 in the second dimension. >>> reader = PatchedArrayReader( >>> data, >>> data_shape=(5, 5), >>> stride=(2, 5), >>> ) >>> # Printing the number of patches that can be extracted from the data >>> print(len(reader)) 6 >>> # Printing the indices of the patches >>> print(reader.indices) [(0, 0), (0, 5), (2, 0), (2, 5), (4, 0), (4, 5)] >>> # Fetch the first patch and print its shape >>> print(reader[0].shape) (5, 5) >>> # Fetch the third patch and print its content >>> print(reader[2]) [[20 21 22 23 24] [30 31 32 33 34] [40 41 42 43 44] [50 51 52 53 54] [60 61 62 63 64]] ``` .. py:method:: __getitem__(idx) Fetch a patch from the data array. Parameters ---------- idx : int The index of the patch to be fetched. Returns ------- np.ndarray The patch that was fetched from the data array with shape `data_shape` .. py:method:: _get_patches() Compute the left upper corner indices of the patches that will be extracted from the data array. The patches are extracted with a stride between them. A list of indices is returned, where each index is a tuple of integers representing the coordinates of the left upper corner of the patches. Returns ------- List[Tuple[int, ...]] A list of indices (coordinates) representing the left upper corner of the patches. .. py:method:: _pad_data(pad_width, mode='constant', **kwargs) Apply padding to the data array. Parameters ---------- pad_width : Tuple[Tuple[int, int], ...] The width of padding to be applied to the data array mode : str, optional The padding mode, by default "constant" .. py:class:: LazyPaddedPatchedMDIOReader(*args, path, mdio_data = 'data/chunked_012', **kwargs) Bases: :py:obj:`minerva.data.readers.zarr_reader.LazyPaddedPatchedZarrReader` Reads patches from a MDIO array. This class is a subclass of `LazyPaddedPatchedZarrReader` and is designed to read patches from the the data Zarr array inside thre MDIO array subdirectory, performing padding in a lazy manner (padding is done in `__getitem__` call). If no padding is necessary, use PatchedMDIOReader. Reads patches from a MDIO array. This class is a subclass of `LazyPaddedPatchedZarrReader`. All other parameters are the same as parent class. Please refer to the documentation of `LazyPaddedPatchedZarrReader` for more information. Parameters ---------- path : PathLike Path to the MDIO array. mdio_data: str Name of data array inside MDIO subdirectory. Defaults to 'data/chunked_012' Notes ----- 1. The MDIO array is expected to be stored on disk. If the array is not stored on disk, it is recommended to use the `LazyPaddedPatchedArrayReader` class instead. 2. Padding is computed when necessary during `__getitem__` calls. Examples --------- ```python >>> from pathlib import Path >>> data_path = Path("data.mdio") >>> reader = LazyPaddedPatchedMDIOReader( ... path=data_path, ... data_shape=(5, 5), ... stride=(2, 5), ... pad_width=((1,1), (0,2)), ... ) >>> print(len(reader)) >>> print(reader[0]) .. py:attribute:: mdio_path .. py:class:: LazyPaddedPatchedZarrReader(*args, path, **kwargs) Bases: :py:obj:`minerva.data.readers.patched_array_reader.LazyPaddedPatchedArrayReader` Reads patches from a Zarr array. This class is a subclass of `LazyPaddedPatchedArrayReader` and is designed to read patches from a Zarr array, performing padding in a lazy manner (padding is done in `__getitem__` call). If no padding is necessary, use PatchedZarrReader. Reads patches from a Zarr array. This class is a subclass of `LazyPaddedPatchedArrayReader`. All other parameters are the same as parent class. Please refer to the documentation of `LazyPaddedPatchedArrayReader` for more information. This class can be used when padding is necessary and the whole dataset doesn't fit into memory. Parameters ---------- path : PathLike Path to the Zarr array. Notes ----- 1. The Zarr array is expected to be stored on disk. If the array is not stored on disk, it is recommended to use the `LazyPaddedPatchedArrayReader` class instead. 2. Padding is computed when necessary during `__getitem__` calls. Examples --------- ```python >>> from pathlib import Path >>> data_path = Path("data.zarr") >>> reader = LazyPaddedPatchedZarrReader( ... path=data_path, ... data_shape=(5, 5), ... stride=(2, 5), ... pad_width=((1,1), (0,2)), ... ) >>> print(len(reader)) >>> print(reader[0]) .. py:attribute:: path .. py:class:: NumpyArrayReader(data, data_shape, stride = None, pad_width = None, pad_mode = 'constant', pad_kwargs = None, allow_pickle = True, npz_key = None) Bases: :py:obj:`PatchedArrayReader` This class is used to read data from a NumPy array. It is designed to generate patches from the data and provides sequential access to them. This class can serve as a base class for other readers. Assumptions: - The input data is expected to be a NumPy-like array, that is, it should support NumPy-like indexing. - Patches are fixed-size subarrays of the data. - Patches can have overlap between them. Reads data from a NumPy array and generates patches from it. Parameters ---------- data : ArrayLike The input array from which patches are generated. data_shape : Tuple[int, ...] The shape of the patches to be extracted. This will be the shape of the subarray that is returned when a patch is accessed using __getitem__. stride : Tuple[int, ...], optional The stride between consecutive patches. If `None`, the stide will be the same as `data_shape`. By default None pad_width : Tuple[Tuple[int, int], ...], optional The width of padding to be applied to the data array. By default `None`, that is, no padding is applied. Check the documentation of `numpy.pad` for more information. pad_mode : str, optional The padding mode, by default "constant". Check the documentation of `numpy.pad` for more information. pad_kwargs : dict, optional Additional keyword arguments for padding, by default None Examples -------- ```python >>> import numpy as np >>> # Generate a 10x10 array >>> data = np.arange(100).reshape(10, 10) >>> # Create a reader that generates 5x5 patches with a stride of 2 in the >>> # first dimension and 5 in the second dimension. >>> reader = PatchedArrayReader( >>> data, >>> data_shape=(5, 5), >>> stride=(2, 5), >>> ) >>> # Printing the number of patches that can be extracted from the data >>> print(len(reader)) 6 >>> # Printing the indices of the patches >>> print(reader.indices) [(0, 0), (0, 5), (2, 0), (2, 5), (4, 0), (4, 5)] >>> # Fetch the first patch and print its shape >>> print(reader[0].shape) (5, 5) >>> # Fetch the third patch and print its content >>> print(reader[2]) [[20 21 22 23 24] [30 31 32 33 34] [40 41 42 43 44] [50 51 52 53 54] [60 61 62 63 64]] ``` .. py:class:: PNGReader(path, sort_method = None, delimiter = None, key_index = 0, reverse = False) Bases: :py:obj:`minerva.data.readers.base_file_iterator.BaseFileIterator` A base class for iterating over files in a directory in a custom sorted order. Load image files from a directory. Parameters ---------- path : Union[Path, str] The path to the directory containing the image files. Files will be searched recursively. sort_method : Optional[List[str]], optional A list specifying how to sort each part of the filename. Each element can be either "text" (lexicographical) or "numeric" (numerically). By default, None, which will use "numeric" if numeric parts are detected. delimiter : Optional[str], optional The delimiter to split filenames into components, by default None. key_index : Union[int, List[int]], optional The index (or list of indices) of the part(s) of the filename to use for sorting. If a list is provided, files will be sorted based on multiple parts in sequence. Thus, first by the part at index 0, then by the part at index 1, and so on. By default 0. reverse : bool, optional Whether to sort in reverse order, by default False. Raises ------ NotADirectoryError If the path is not a directory. .. py:method:: __getitem__(index) Retrieve the PNG file at the specified index. .. py:method:: __str__() .. py:attribute:: root_dir .. py:class:: PatchedArrayReader(data, data_shape, stride = None, pad_width = None, pad_mode = 'constant', pad_kwargs = None) Bases: :py:obj:`minerva.data.readers.reader._Reader` This class is used to read data from a NumPy array. It is designed to generate patches from the data and provides sequential access to them. This class can serve as a base class for other readers. Assumptions: - The input data is expected to be a NumPy-like array, that is, it should support NumPy-like indexing. - Patches are fixed-size subarrays of the data. - Patches can have overlap between them. Reads data from a NumPy array and generates patches from it. Parameters ---------- data : ArrayLike The input array from which patches are generated. data_shape : Tuple[int, ...] The shape of the patches to be extracted. This will be the shape of the subarray that is returned when a patch is accessed using __getitem__. stride : Tuple[int, ...], optional The stride between consecutive patches. If `None`, the stide will be the same as `data_shape`. By default None pad_width : Tuple[Tuple[int, int], ...], optional The width of padding to be applied to the data array. By default `None`, that is, no padding is applied. Check the documentation of `numpy.pad` for more information. pad_mode : str, optional The padding mode, by default "constant". Check the documentation of `numpy.pad` for more information. pad_kwargs : dict, optional Additional keyword arguments for padding, by default None Examples -------- ```python >>> import numpy as np >>> # Generate a 10x10 array >>> data = np.arange(100).reshape(10, 10) >>> # Create a reader that generates 5x5 patches with a stride of 2 in the >>> # first dimension and 5 in the second dimension. >>> reader = PatchedArrayReader( >>> data, >>> data_shape=(5, 5), >>> stride=(2, 5), >>> ) >>> # Printing the number of patches that can be extracted from the data >>> print(len(reader)) 6 >>> # Printing the indices of the patches >>> print(reader.indices) [(0, 0), (0, 5), (2, 0), (2, 5), (4, 0), (4, 5)] >>> # Fetch the first patch and print its shape >>> print(reader[0].shape) (5, 5) >>> # Fetch the third patch and print its content >>> print(reader[2]) [[20 21 22 23 24] [30 31 32 33 34] [40 41 42 43 44] [50 51 52 53 54] [60 61 62 63 64]] ``` .. py:method:: __getitem__(idx) Fetch a patch from the data array. Parameters ---------- idx : int The index of the patch to be fetched. Returns ------- np.ndarray The patch that was fetched from the data array with shape `data_shape` .. py:method:: __len__() Return the number of patches that can be extracted from the data array. Returns ------- int The number of patches that can be extracted from the data array. .. py:method:: __str__() .. py:method:: _get_patches() Compute the left upper corner indices of the patches that will be extracted from the data array. The patches are extracted with a stride between them. A list of indices is returned, where each index is a tuple of integers representing the coordinates of the left upper corner of the patches. Returns ------- List[Tuple[int, ...]] A list of indices (coordinates) representing the left upper corner of the patches. .. py:method:: _pad_data(pad_width, mode='constant', **kwargs) Apply padding to the data array. Parameters ---------- pad_width : Tuple[Tuple[int, int], ...] The width of padding to be applied to the data array mode : str, optional The padding mode, by default "constant" .. py:attribute:: data .. py:attribute:: data_shape .. py:attribute:: indices :value: [] .. py:attribute:: pad_kwargs .. py:attribute:: pad_mode :value: 'constant' .. py:attribute:: pad_width :value: None .. py:attribute:: shape .. py:attribute:: stride .. py:class:: PatchedMDIOReader(*args, path, mdio_data = 'data/chunked_012', **kwargs) Bases: :py:obj:`minerva.data.readers.zarr_reader.PatchedZarrReader` Reads patches from a MDIO array. This class is a subclass of `PatchedZarrReader` and is designed to read patches from the the data Zarr array inside thre MDIO array subdirectory. Reads patches from a MDIO array. This class is a subclass of `PatchedZarrReader`. All other parameters are the same as parent class. Please refer to the documentation of `PatchedZarrReader` for more information. Parameters ---------- path : PathLike Path to the MDIO array. mdio_data: str Name of data array inside MDIO subdirectory. Defaults to 'data/chunked_012' Notes ----- 1. The MDIO array is expected to be stored on disk. If the array is not stored on disk, it is recommended to use the `PatchedArrayReader` class instead. 2. When using padding, the padding is applied to the entire array. This will load the entire array into memory. If the array is too large to fit into memory, it is recommended to pad before. See `LazyPaddedPatchedMDIOReader` for an a lazy alternative. Examples --------- ```python >>> from pathlib import Path >>> data_path = Path("data.mdio") >>> reader = PatchedMDIOReader( ... path=data_path, ... data_shape=(5, 5), ... stride=(2, 5), ... ) >>> print(len(reader)) >>> print(reader[0]) .. py:attribute:: mdio_path .. py:class:: PatchedZarrReader(*args, path, **kwargs) Bases: :py:obj:`minerva.data.readers.patched_array_reader.PatchedArrayReader` Reads patches from a Zarr array. This class is a subclass of `PatchedArrayReader` and is designed to read patches from a Zarr array. Reads patches from a Zarr array. This class is a subclass of `PatchedArrayReader`. All other parameters are the same as parent class. Please refer to the documentation of `PatchedArrayReader` for more information. Parameters ---------- path : PathLike Path to the Zarr array. Notes ----- 1. The Zarr array is expected to be stored on disk. If the array is not stored on disk, it is recommended to use the `PatchedArrayReader` class instead. 2. When using padding, the padding is applied to the entire array. This will load the entire array into memory. If the array is too large to fit into memory, it is recommended to pad before. See `LazyPaddedPatchedZarrReader` for an a lazy alternative. Examples --------- ```python >>> from pathlib import Path >>> data_path = Path("data.zarr") >>> reader = PatchedZarrReader( ... path=data_path, ... data_shape=(5, 5), ... stride=(2, 5), ... ) >>> print(len(reader)) >>> print(reader[0]) .. py:attribute:: path .. py:class:: TiffReader(path, sort_method = None, delimiter = None, key_index = 0, reverse = False) Bases: :py:obj:`minerva.data.readers.base_file_iterator.BaseFileIterator` A base class for iterating over files in a directory in a custom sorted order. Load image files from a directory. Parameters ---------- path : Union[Path, str] The path to the directory containing the image files. Files will be searched recursively. sort_method : Optional[List[str]], optional A list specifying how to sort each part of the filename. Each element can be either "text" (lexicographical) or "numeric" (numerically). By default, None, which will use "numeric" if numeric parts are detected. delimiter : Optional[str], optional The delimiter to split filenames into components, by default None. key_index : Union[int, List[int]], optional The index (or list of indices) of the part(s) of the filename to use for sorting. If a list is provided, files will be sorted based on multiple parts in sequence. Thus, first by the part at index 0, then by the part at index 1, and so on. By default 0. reverse : bool, optional Whether to sort in reverse order, by default False. Raises ------ NotADirectoryError If the path is not a directory. .. py:method:: __getitem__(index) Retrieve the TIFF file at the specified index. .. py:method:: __str__() .. py:attribute:: root_dir .. py:class:: _Reader Base class for readers. Readers define an ordered collection of data and provide methods to access it. This class primarily handles: 1. Definition of data structure and storage. 2. Reading data from the source. The access is handled by the __getitem__ and __len__ methods, which should be implemented by a subclass. Readers usually returns a single item at a time, that can be a single image, a single label, etc. .. py:method:: __getitem__(index) :abstractmethod: Retrieve an item from the reader at the specified index. Parameters ---------- index : int Index of the item to retrieve. Returns ------- Any An item from the reader. .. py:method:: __len__() :abstractmethod: Get the length of the reader. Returns ------- int The length of the reader.