minerva.losses.dice =================== .. py:module:: minerva.losses.dice Attributes ---------- .. autoapisummary:: minerva.losses.dice.BINARY_MODE minerva.losses.dice.MULTICLASS_MODE minerva.losses.dice.MULTILABEL_MODE Classes ------- .. autoapisummary:: minerva.losses.dice.DiceLoss Module Contents --------------- .. py:data:: BINARY_MODE :value: 'binary' .. py:class:: DiceLoss(mode, classes = None, log_loss = False, from_logits = True, smooth = 0.0, ignore_index = None, eps = 1e-07) Bases: :py:obj:`torch.nn.modules.loss._Loss` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initialize the DiceLoss class. Parameters ---------- mode : str Loss mode. Valid options are 'binary', 'multiclass', or 'multilabel'. classes : Optional[List[int]], optional List of classes that contribute in loss computation. By default, all channels are included. By default None log_loss : bool, optional If True, loss is computed as `- log(dice_coeff)`. If False, loss is computed as `1 - dice_coeff`, by default False from_logits : bool, optional If True, assumes input is raw logits. If False, assumes input is probabilities., by default True smooth : float, optional Smoothness constant for dice coefficient (a), by default 0.0 ignore_index : Optional[int], optional Label that indicates ignored pixels (does not contribute to loss), by default None eps : float, optional A small epsilon for numerical stability to avoid zero division error (denominator will be always greater or equal to eps), by default 1e-7 Raises ------ AssertionError If the mode is not one of 'binary', 'multiclass', or 'multilabel' and classes are being masked with mode='binary'. .. py:method:: aggregate_loss(loss) .. py:attribute:: classes :value: None .. py:method:: compute_score(output, target, smooth=0.0, eps=1e-07, dims=None) .. py:attribute:: eps :value: 1e-07 .. py:method:: forward(y_pred, y_true) .. py:attribute:: from_logits :value: True .. py:attribute:: ignore_index :value: None .. py:attribute:: log_loss :value: False .. py:attribute:: mode .. py:attribute:: smooth :value: 0.0 .. py:data:: MULTICLASS_MODE :value: 'multiclass' .. py:data:: MULTILABEL_MODE :value: 'multilabel'