minerva.losses.ntxent_loss_poly =============================== .. py:module:: minerva.losses.ntxent_loss_poly Classes ------- .. autoapisummary:: minerva.losses.ntxent_loss_poly.NTXentLoss_poly Module Contents --------------- .. py:class:: NTXentLoss_poly(device, batch_size, temperature, use_cosine_similarity) Bases: :py:obj:`torch.nn.modules.loss._Loss` Loss function used on the pretraining of the TFC model. It is based on the NTXentLoss, but it includes a polynomial loss term. The constructor of the NTXentLoss_poly class. Parameters ---------- - device: str The device to be used in the training of the model - batch_size: int The batch size of the model - temperature: float The temperature of the softmax function - use_cosine_similarity: bool If True, the cosine similarity is used. If False, the dot product is used .. py:method:: _cosine_simililarity(x, y) Function to calculate the cosine similarity between two tensors. Parameters ---------- - x: torch.Tensor The first tensor - y: torch.Tensor The second tensor Returns ------- - torch.Tensor The cosine similarity between the two tensors .. py:method:: _dot_simililarity(x, y) :staticmethod: Function to calculate the dot similarity between two tensors. Parameters ---------- - x: torch.Tensor The first tensor - y: torch.Tensor The second tensor Returns ------- - torch.Tensor The dot similarity between the two tensors .. py:method:: _get_correlated_mask() Get the mask of correlated samples. Returns ------- - torch.Tensor The mask of correlated samples .. py:method:: _get_similarity_function(use_cosine_similarity) Define the similarity function to be used in the loss calculation. Parameters ---------- - use_cosine_similarity: bool If True, the cosine similarity is used. If False, the dot product is used Returns ------- - function The similarity function to be used in the loss calculation .. py:attribute:: batch_size .. py:attribute:: criterion .. py:attribute:: device .. py:method:: forward(zis, zjs) The forward method of the NTXentLoss_poly class. It receives the samples and returns the loss of the model. Parameters ---------- - zis: torch.Tensor The positive samples - zjs: torch.Tensor The negative samples Returns ------- - _Loss The loss of the model .. py:attribute:: mask_samples_from_same_repr .. py:attribute:: similarity_function .. py:attribute:: softmax .. py:attribute:: temperature