minerva.losses.topological_loss =============================== .. py:module:: minerva.losses.topological_loss Classes ------- .. autoapisummary:: minerva.losses.topological_loss.AlephPersistenHomologyCalculation minerva.losses.topological_loss.PersistentHomologyCalculation minerva.losses.topological_loss.TopologicalLoss minerva.losses.topological_loss.TopologicalSignatureDistance minerva.losses.topological_loss.UnionFind Module Contents --------------- .. py:class:: AlephPersistenHomologyCalculation(compute_cycles, sort_selected) Calculate persistent homology using aleph. Args: compute_cycles: Whether to compute cycles sort_selected: Whether to sort the selected pairs using the distance matrix (such that they are in the order of the filteration) .. py:method:: __call__(distance_matrix) Do PH calculation. Args: distance_matrix: numpy array of distances Returns: tuple(edge_featues, cycle_features) .. py:attribute:: compute_cycles .. py:attribute:: sort_selected .. py:class:: PersistentHomologyCalculation .. py:method:: __call__(matrix) .. py:class:: TopologicalLoss(p = 2) Bases: :py:obj:`torch.nn.modules.loss._Loss` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initialize the TopologicalLoss class. Parameters ---------- p : int, optional Order of norm used for distance computation, by default 2 .. py:method:: _compute_distance_matrix(x, p=2) :staticmethod: .. py:method:: forward(x, x_encoded) .. py:attribute:: latent_norm .. py:attribute:: p :value: 2 .. py:attribute:: topological_signature_distance .. py:class:: TopologicalSignatureDistance(sort_selected=False, use_cycles=False, match_edges=None) Bases: :py:obj:`torch.nn.Module` Topological signature. Topological signature computation. Args: p: Order of norm used for distance computation use_cycles: Flag to indicate whether cycles should be used or not. .. py:method:: _count_matching_pairs(pairs1, pairs2) :staticmethod: .. py:method:: _get_nonzero_cycles(pairs) :staticmethod: .. py:method:: _get_pairings(distances) .. py:method:: _select_distances_from_pairs(distance_matrix, pairs) .. py:method:: forward(distances1, distances2) Return topological distance of two pairwise distance matrices. Args: distances1: Distance matrix in space 1 distances2: Distance matrix in space 2 Returns: distance, dict(additional outputs) .. py:attribute:: match_edges :value: None .. py:method:: sig_error(signature1, signature2) :staticmethod: Compute distance between two topological signatures. .. py:attribute:: signature_calculator .. py:attribute:: use_cycles :value: False .. py:class:: UnionFind(n_vertices) An implementation of a Union--Find class. The class performs path compression by default. It uses integers for storing one disjoint set, assuming that vertices are zero-indexed. Initializes an empty Union--Find data structure for a given number of vertices. .. py:attribute:: _parent .. py:method:: find(u) Finds and returns the parent of u with respect to the hierarchy. .. py:method:: merge(u, v) Merges vertex u into the component of vertex v. Note the asymmetry of this operation. .. py:method:: roots() Generator expression for returning roots, i.e. components that are their own parents.