minerva.losses.xtent_loss ========================= .. py:module:: minerva.losses.xtent_loss Classes ------- .. autoapisummary:: minerva.losses.xtent_loss.NTXentLoss Module Contents --------------- .. py:class:: NTXentLoss(temperature) Bases: :py:obj:`torch.nn.modules.loss._Loss` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool The constructor of the NTXentLoss class. Parameters ---------- - temperature: float The temperature of the softmax function .. py:attribute:: criterion .. py:attribute:: eps :value: 1e-08 .. py:method:: forward(y_0, y_1) Forward pass of the NTXentLoss class. Based on Lightly SSL's implementation. Parameters ---------- - y_0: Tensor The first tensor to be compared - y_1: Tensor The second tensor to be compared Returns ------- - Tensor The loss value .. py:attribute:: temperature