minerva.models.nets.base ======================== .. py:module:: minerva.models.nets.base Classes ------- .. autoapisummary:: minerva.models.nets.base.SimpleSupervisedModel Module Contents --------------- .. py:class:: SimpleSupervisedModel(backbone, fc, loss_fn, adapter = None, learning_rate = 0.001, flatten = True, train_metrics = None, val_metrics = None, test_metrics = None, freeze_backbone = False) Bases: :py:obj:`lightning.LightningModule` Simple pipeline for supervised models. This class implements a very common deep learning pipeline, which is composed by the following steps: 1. Make a forward pass with the input data on the backbone model; 2. Make a forward pass with the input data on the fc model; 3. Compute the loss between the output and the label data; 4. Optimize the model (backbone and FC) parameters with respect to the loss. This reduces the code duplication for autoencoder models, and makes it easier to implement new models by only changing the backbone model. More complex models, that does not follow this pipeline, should not inherit from this class. Note that, for this class the input data is a tuple of tensors, where the first tensor is the input data and the second tensor is the mask or label. Initialize the model with the backbone, fc, loss function and metrics. Metrics are used to evaluate the model during training, validation, testing or prediction. It will be logged using lightning logger at the end of each epoch. Metrics should implement the `torchmetrics.Metric` interface. Parameters ---------- backbone : torch.nn.Module The backbone model. Usually the encoder/decoder part of the model. fc : torch.nn.Module The fully connected model, usually used to classification tasks. Use `torch.nn.Identity()` if no FC model is needed. loss_fn : torch.nn.Module The function used to compute the loss. learning_rate : float, optional The learning rate to Adam optimizer, by default 1e-3 flatten : bool, optional If `True` the input data will be flattened before passing through the fc model, by default True train_metrics : Dict[str, Metric], optional The metrics to be used during training, by default None val_metrics : Dict[str, Metric], optional The metrics to be used during validation, by default None test_metrics : Dict[str, Metric], optional The metrics to be used during testing, by default None predict_metrics : Dict[str, Metric], optional The metrics to be used during prediction, by default None .. py:method:: _compute_metrics(y_hat, y, step_name) Calculate the metrics for the given step. Parameters ---------- y_hat : torch.Tensor The output data from the forward pass. y : torch.Tensor The input data/label. step_name : str Name of the step. It will be used to get the metrics from the `self.metrics` attribute. Returns ------- Dict[str, torch.Tensor] A dictionary with the metrics values. .. py:method:: _loss_func(y_hat, y) Calculate the loss between the output and the input data. Parameters ---------- y_hat : torch.Tensor The output data from the forward pass. y : torch.Tensor The input data/label. Returns ------- torch.Tensor The loss value. .. py:method:: _single_step(batch, batch_idx, step_name) Perform a single train/validation/test step. It consists in making a forward pass with the input data on the backbone model, computing the loss between the output and the input data, and logging the loss. Parameters ---------- batch : torch.Tensor The input data. It must be a 2-element tuple of tensors, where the first tensor is the input data and the second tensor is the mask. batch_idx : int The index of the batch. step_name : str The name of the step. It will be used to log the loss. The possible values are: "train", "val" and "test". The loss will be logged as "{step_name}_loss". Returns ------- torch.Tensor A tensor with the loss value. .. py:attribute:: adapter :value: None .. py:attribute:: backbone .. py:method:: configure_optimizers() Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode. Return: Any of these 6 options. - **Single optimizer**. - **List or Tuple** of optimizers. - **Two lists** - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple ``lr_scheduler_config``). - **Dictionary**, with an ``"optimizer"`` key, and (optionally) a ``"lr_scheduler"`` key whose value is a single LR scheduler or ``lr_scheduler_config``. - **None** - Fit will run without any optimizer. The ``lr_scheduler_config`` is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below. .. code-block:: python lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, } When there are schedulers in which the ``.step()`` method is conditioned on a value, such as the :class:`torch.optim.lr_scheduler.ReduceLROnPlateau` scheduler, Lightning requires that the ``lr_scheduler_config`` contains the keyword ``"monitor"`` set to the metric name that the scheduler should be conditioned on. .. testcode:: # The ReduceLROnPlateau scheduler requires a monitor def configure_optimizers(self): optimizer = Adam(...) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau(optimizer, ...), "monitor": "metric_to_track", "frequency": "indicates how often the metric is updated", # If "monitor" references validation metrics, then "frequency" should be set to a # multiple of "trainer.check_val_every_n_epoch". }, } # In the case of two optimizers, only one using the ReduceLROnPlateau scheduler def configure_optimizers(self): optimizer1 = Adam(...) optimizer2 = SGD(...) scheduler1 = ReduceLROnPlateau(optimizer1, ...) scheduler2 = LambdaLR(optimizer2, ...) return ( { "optimizer": optimizer1, "lr_scheduler": { "scheduler": scheduler1, "monitor": "metric_to_track", }, }, {"optimizer": optimizer2, "lr_scheduler": scheduler2}, ) Metrics can be made available to monitor by simply logging it using ``self.log('metric_to_track', metric_val)`` in your :class:`~lightning.pytorch.core.LightningModule`. Note: Some things to know: - Lightning calls ``.backward()`` and ``.step()`` automatically in case of automatic optimization. - If a learning rate scheduler is specified in ``configure_optimizers()`` with key ``"interval"`` (default "epoch") in the scheduler configuration, Lightning will call the scheduler's ``.step()`` method automatically in case of automatic optimization. - If you use 16-bit precision (``precision=16``), Lightning will automatically handle the optimizer. - If you use :class:`torch.optim.LBFGS`, Lightning handles the closure function automatically for you. - If you use multiple optimizers, you will have to switch to 'manual optimization' mode and step them yourself. - If you need to control how often the optimizer steps, override the :meth:`optimizer_step` hook. .. py:attribute:: fc .. py:attribute:: flatten :value: True .. py:method:: forward(x) Perform a forward pass with the input data on the backbone model. Parameters ---------- x : torch.Tensor The input data. Returns ------- torch.Tensor The output data from the forward pass. .. py:attribute:: freeze_backbone :value: False .. py:attribute:: learning_rate :value: 0.001 .. py:attribute:: loss_fn .. py:attribute:: metrics .. py:method:: predict_step(batch, batch_idx, dataloader_idx=None) Step function called during :meth:`~lightning.pytorch.trainer.trainer.Trainer.predict`. By default, it calls :meth:`~lightning.pytorch.core.LightningModule.forward`. Override to add any processing logic. The :meth:`~lightning.pytorch.core.LightningModule.predict_step` is used to scale inference on multi-devices. To prevent an OOM error, it is possible to use :class:`~lightning.pytorch.callbacks.BasePredictionWriter` callback to write the predictions to disk or database after each batch or on epoch end. The :class:`~lightning.pytorch.callbacks.BasePredictionWriter` should be used while using a spawn based accelerator. This happens for ``Trainer(strategy="ddp_spawn")`` or training on 8 TPU cores with ``Trainer(accelerator="tpu", devices=8)`` as predictions won't be returned. Args: batch: The output of your data iterable, normally a :class:`~torch.utils.data.DataLoader`. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch. (only if multiple dataloaders used) Return: Predicted output (optional). Example :: class MyModel(LightningModule): def predict_step(self, batch, batch_idx, dataloader_idx=0): return self(batch) dm = ... model = MyModel() trainer = Trainer(accelerator="gpu", devices=2) predictions = trainer.predict(model, dm) .. py:method:: test_step(batch, batch_idx) Operates on a single batch of data from the test set. In this step you'd normally generate examples or calculate anything of interest such as accuracy. Args: batch: The output of your data iterable, normally a :class:`~torch.utils.data.DataLoader`. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch. (only if multiple dataloaders used) Return: - :class:`~torch.Tensor` - The loss tensor - ``dict`` - A dictionary. Can include any keys, but must include the key ``'loss'``. - ``None`` - Skip to the next batch. .. code-block:: python # if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ... Examples:: # CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc}) If you pass in multiple test dataloaders, :meth:`test_step` will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders. .. code-block:: python # CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ... Note: If you don't need to test you don't need to implement this method. Note: When the :meth:`test_step` is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled. .. py:method:: training_step(batch, batch_idx) Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger. Args: batch: The output of your data iterable, normally a :class:`~torch.utils.data.DataLoader`. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch. (only if multiple dataloaders used) Return: - :class:`~torch.Tensor` - The loss tensor - ``dict`` - A dictionary which can include any keys, but must include the key ``'loss'`` in the case of automatic optimization. - ``None`` - In automatic optimization, this will skip to the next batch (but is not supported for multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning the loss is not required. In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific. Example:: def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss To use multiple optimizers, you can switch to 'manual optimization' and control their stepping: .. code-block:: python def __init__(self): super().__init__() self.automatic_optimization = False # Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx): opt1, opt2 = self.optimizers() # do training_step with encoder ... opt1.step() # do training_step with decoder ... opt2.step() Note: When ``accumulate_grad_batches`` > 1, the loss returned here will be automatically normalized by ``accumulate_grad_batches`` internally. .. py:method:: validation_step(batch, batch_idx) Operates on a single batch of data from the validation set. In this step you'd might generate examples or calculate anything of interest like accuracy. Args: batch: The output of your data iterable, normally a :class:`~torch.utils.data.DataLoader`. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch. (only if multiple dataloaders used) Return: - :class:`~torch.Tensor` - The loss tensor - ``dict`` - A dictionary. Can include any keys, but must include the key ``'loss'``. - ``None`` - Skip to the next batch. .. code-block:: python # if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ... Examples:: # CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc}) If you pass in multiple val dataloaders, :meth:`validation_step` will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders. .. code-block:: python # CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ... Note: If you don't need to validate you don't need to implement this method. Note: When the :meth:`validation_step` is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.