minerva.models.nets.conv_autoencoders_encoders ============================================== .. py:module:: minerva.models.nets.conv_autoencoders_encoders Classes ------- .. autoapisummary:: minerva.models.nets.conv_autoencoders_encoders.ConvTAEDecoder minerva.models.nets.conv_autoencoders_encoders.ConvTAEEncoder Module Contents --------------- .. py:class:: ConvTAEDecoder(target_channels = 6, target_time_steps = 60, encoding_size = 256, fc_num_layers = 3, conv_num_layers = 3, conv_mid_channels = 12, conv_kernel = 5, conv_padding = 0) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool A decoder for a simple convolutional autodecoder. Parameters ---------- target_channels : int, optional Number of channels of the output that the model should target to, by default 6 target_time_steps : int, optional Number of time steps of the output that the model should target to, by default 60 encoding_size : int, optional Size of the data representation received by the model, by default 256 fc_num_layers : int, optional Number of fully connected layers, by default 3 conv_num_layers : int, optional Number of convolutional layers, by default 3 conv_mid_channels : int, optional Number of channels used for in_channels and out_channels in the convolutional layers, except in the last, by default 12 conv_kernel : int, optional Size of the convolutional kernel, by default 5 conv_padding : int, optional Padding used in the convolutional layers, by default 0 .. py:attribute:: conv_kernel :value: 5 .. py:attribute:: conv_mid_channels :value: 12 .. py:attribute:: conv_num_layers :value: 3 .. py:attribute:: conv_padding :value: 0 .. py:attribute:: encoding_size :value: 256 .. py:attribute:: fc_num_layers :value: 3 .. py:method:: forward(x) .. py:attribute:: model .. py:attribute:: target_channels :value: 6 .. py:attribute:: target_time_steps :value: 60 .. py:class:: ConvTAEEncoder(in_channels = 6, time_steps = 60, encoding_size = 256, fc_num_layers = 3, conv_num_layers = 3, conv_mid_channels = 12, conv_kernel = 5, conv_padding = 0) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool An encoder for a simple convolutional autoencoder. Parameters ---------- in_channels : int, optional Number of channels of the input that the model receives, by default 2 time_steps : int, optional Number of time steps of the input that the model receives, by default 60 encoding_size : int, optional Size of the data representation generated by the model, by default 256 fc_num_layers : int, optional Number of fully connected layers, by default 3 conv_num_layers : int, optional Number of convolutional layers, by default 3 conv_mid_channels : int, optional Number of channels used for in_channels and out_channels in the convolutional layers, except in the first, by default 12 conv_kernel : int, optional Size of the convolutional kernel, by default 5 conv_padding : int, optional Padding used in the convolutional layers, by default 0 .. py:attribute:: conv_kernel :value: 5 .. py:attribute:: conv_mid_channels :value: 12 .. py:attribute:: conv_num_layers :value: 3 .. py:attribute:: conv_padding :value: 0 .. py:attribute:: encoding_size :value: 256 .. py:attribute:: fc_num_layers :value: 3 .. py:method:: forward(x) .. py:attribute:: in_channels :value: 6 .. py:attribute:: model .. py:attribute:: time_steps :value: 60