minerva.models.nets.image.setr ============================== .. py:module:: minerva.models.nets.image.setr Classes ------- .. autoapisummary:: minerva.models.nets.image.setr.SETR_PUP minerva.models.nets.image.setr._SETRMLAHead minerva.models.nets.image.setr._SETRUPHead minerva.models.nets.image.setr._SetR_PUP Module Contents --------------- .. py:class:: SETR_PUP(image_size = 512, patch_size = 16, num_layers = 24, num_heads = 16, hidden_dim = 1024, mlp_dim = 4096, encoder_dropout = 0.1, num_classes = 1000, norm_layer = None, decoder_channels = 256, num_convs = 4, up_scale = 2, kernel_size = 3, align_corners = False, decoder_dropout = 0.1, conv_norm = None, conv_act = None, interpolate_mode = 'bilinear', loss_fn = None, optimizer_type = None, optimizer_params = None, train_metrics = None, val_metrics = None, test_metrics = None, aux_output = True, aux_output_layers = None, aux_weights = None, load_backbone_path = None, freeze_backbone_on_load = True, learning_rate = 0.001, loss_weights = None, original_resolution = None, head_lr_factor = 1.0, test_engine = None) Bases: :py:obj:`lightning.pytorch.LightningModule` SET-R model with PUP head for image segmentation. Methods ------- forward(x: torch.Tensor) -> torch.Tensor Forward pass of the model. _compute_metrics(y_hat: torch.Tensor, y: torch.Tensor, step_name: str) Compute metrics for the given step. _loss_func(y_hat: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]], y: torch.Tensor) -> torch.Tensor Calculate the loss between the output and the input data. _single_step(batch: torch.Tensor, batch_idx: int, step_name: str) Perform a single step of the training/validation loop. training_step(batch: torch.Tensor, batch_idx: int) Perform a single training step. validation_step(batch: torch.Tensor, batch_idx: int) Perform a single validation step. test_step(batch: torch.Tensor, batch_idx: int) Perform a single test step. predict_step(batch: torch.Tensor, batch_idx: int, dataloader_idx: Optional[int] = None) Perform a single prediction step. load_backbone(path: str, freeze: bool = False) Load a pre-trained backbone. configure_optimizers() Configure the optimizer for the model. create_from_dict(config: Dict) -> "SETR_PUP" Create an instance of SETR_PUP from a configuration dictionary. Initialize the SETR model with Progressive Upsampling Head. Parameters ---------- image_size : Union[int, Tuple[int, int]], optional Size of the input image, by default 512. patch_size : int, optional Size of the patches to be extracted from the input image, by default 16. num_layers : int, optional Number of transformer layers, by default 24. num_heads : int, optional Number of attention heads, by default 16. hidden_dim : int, optional Dimension of the hidden layer, by default 1024. mlp_dim : int, optional Dimension of the MLP layer, by default 4096. encoder_dropout : float, optional Dropout rate for the encoder, by default 0.1. num_classes : int, optional Number of output classes, by default 1000. norm_layer : Optional[nn.Module], optional Normalization layer, by default None. decoder_channels : int, optional Number of channels in the decoder, by default 256. num_convs : int, optional Number of convolutional layers in the decoder, by default 4. up_scale : int, optional Upscaling factor for the decoder, by default 2. kernel_size : int, optional Kernel size for the convolutional layers, by default 3. align_corners : bool, optional Whether to align corners when interpolating, by default False. decoder_dropout : float, optional Dropout rate for the decoder, by default 0.1. conv_norm : Optional[nn.Module], optional Normalization layer for the convolutional layers, by default None. conv_act : Optional[nn.Module], optional Activation function for the convolutional layers, by default None. interpolate_mode : str, optional Interpolation mode, by default "bilinear". loss_fn : Optional[nn.Module], optional Loss function, when None defaults to nn.CrossEntropyLoss, by default None. optimizer_type : Optional[type], optional Type of optimizer, by default None. optimizer_params : Optional[Dict], optional Parameters for the optimizer, by default None. train_metrics : Optional[Dict[str, Metric]], optional Metrics for training, by default None. val_metrics : Optional[Dict[str, Metric]], optional Metrics for validation, by default None. test_metrics : Optional[Dict[str, Metric]], optional Metrics for testing, by default None. aux_output : bool, optional Whether to use auxiliary outputs, by default True. aux_output_layers : list[int], optional Layers for auxiliary outputs, when None it defaults to [9, 14, 19]. aux_weights : list[float], optional Weights for auxiliary outputs, when None it defaults [0.3, 0.3, 0.3]. load_backbone_path : Optional[str], optional Path to load the backbone model, by default None. freeze_backbone_on_load : bool, optional Whether to freeze the backbone model on load, by default True. learning_rate : float, optional Learning rate, by default 1e-3. loss_weights : Optional[list[float]], optional Weights for the loss function, by default None. original_resolution : Optional[Tuple[int, int]], optional The original resolution of the input image in the pre-training weights. When None, positional embeddings will not be interpolated. Defaults to None. head_lr_factor : float, optional Learning rate factor for the head. used if you need different learning rates for backbone and prediction head, by default 1.0. test_engine : Optional[_Engine], optional Engine used for test and validation steps. When None, behavior of all steps, training, testing and validation is the same, by default None. .. py:method:: _compute_metrics(y_hat, y, step_name) .. py:method:: _loss_func(y_hat, y) Calculate the loss between the output and the input data. Parameters ---------- y_hat : torch.Tensor The output data from the forward pass. y : torch.Tensor The input data/label. Returns ------- torch.Tensor The loss value. .. py:method:: _single_step(batch, batch_idx, step_name) Perform a single step of the training/validation loop. Parameters ---------- batch : torch.Tensor The input data. batch_idx : int The index of the batch. step_name : str The name of the step, either "train" or "val". Returns ------- torch.Tensor The loss value. .. py:attribute:: aux_weights :value: None .. py:method:: configure_optimizers() Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode. Return: Any of these 6 options. - **Single optimizer**. - **List or Tuple** of optimizers. - **Two lists** - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple ``lr_scheduler_config``). - **Dictionary**, with an ``"optimizer"`` key, and (optionally) a ``"lr_scheduler"`` key whose value is a single LR scheduler or ``lr_scheduler_config``. - **None** - Fit will run without any optimizer. The ``lr_scheduler_config`` is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below. .. code-block:: python lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, } When there are schedulers in which the ``.step()`` method is conditioned on a value, such as the :class:`torch.optim.lr_scheduler.ReduceLROnPlateau` scheduler, Lightning requires that the ``lr_scheduler_config`` contains the keyword ``"monitor"`` set to the metric name that the scheduler should be conditioned on. .. testcode:: # The ReduceLROnPlateau scheduler requires a monitor def configure_optimizers(self): optimizer = Adam(...) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau(optimizer, ...), "monitor": "metric_to_track", "frequency": "indicates how often the metric is updated", # If "monitor" references validation metrics, then "frequency" should be set to a # multiple of "trainer.check_val_every_n_epoch". }, } # In the case of two optimizers, only one using the ReduceLROnPlateau scheduler def configure_optimizers(self): optimizer1 = Adam(...) optimizer2 = SGD(...) scheduler1 = ReduceLROnPlateau(optimizer1, ...) scheduler2 = LambdaLR(optimizer2, ...) return ( { "optimizer": optimizer1, "lr_scheduler": { "scheduler": scheduler1, "monitor": "metric_to_track", }, }, {"optimizer": optimizer2, "lr_scheduler": scheduler2}, ) Metrics can be made available to monitor by simply logging it using ``self.log('metric_to_track', metric_val)`` in your :class:`~lightning.pytorch.core.LightningModule`. Note: Some things to know: - Lightning calls ``.backward()`` and ``.step()`` automatically in case of automatic optimization. - If a learning rate scheduler is specified in ``configure_optimizers()`` with key ``"interval"`` (default "epoch") in the scheduler configuration, Lightning will call the scheduler's ``.step()`` method automatically in case of automatic optimization. - If you use 16-bit precision (``precision=16``), Lightning will automatically handle the optimizer. - If you use :class:`torch.optim.LBFGS`, Lightning handles the closure function automatically for you. - If you use multiple optimizers, you will have to switch to 'manual optimization' mode and step them yourself. - If you need to control how often the optimizer steps, override the :meth:`optimizer_step` hook. .. py:method:: create_from_dict(config) :staticmethod: .. py:method:: forward(x) Same as :meth:`torch.nn.Module.forward`. Args: *args: Whatever you decide to pass into the forward method. **kwargs: Keyword arguments are also possible. Return: Your model's output .. py:attribute:: head_lr_factor :value: 1.0 .. py:attribute:: learning_rate :value: 0.001 .. py:method:: load_backbone(path, freeze = False) .. py:attribute:: loss_fn :value: None .. py:attribute:: metrics .. py:attribute:: model .. py:attribute:: num_classes :value: 1000 .. py:attribute:: optimizer_type :value: None .. py:method:: predict_step(batch, batch_idx, dataloader_idx = None) Step function called during :meth:`~lightning.pytorch.trainer.trainer.Trainer.predict`. By default, it calls :meth:`~lightning.pytorch.core.LightningModule.forward`. Override to add any processing logic. The :meth:`~lightning.pytorch.core.LightningModule.predict_step` is used to scale inference on multi-devices. To prevent an OOM error, it is possible to use :class:`~lightning.pytorch.callbacks.BasePredictionWriter` callback to write the predictions to disk or database after each batch or on epoch end. The :class:`~lightning.pytorch.callbacks.BasePredictionWriter` should be used while using a spawn based accelerator. This happens for ``Trainer(strategy="ddp_spawn")`` or training on 8 TPU cores with ``Trainer(accelerator="tpu", devices=8)`` as predictions won't be returned. Args: batch: The output of your data iterable, normally a :class:`~torch.utils.data.DataLoader`. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch. (only if multiple dataloaders used) Return: Predicted output (optional). Example :: class MyModel(LightningModule): def predict_step(self, batch, batch_idx, dataloader_idx=0): return self(batch) dm = ... model = MyModel() trainer = Trainer(accelerator="gpu", devices=2) predictions = trainer.predict(model, dm) .. py:attribute:: test_engine :value: None .. py:method:: test_step(batch, batch_idx) Operates on a single batch of data from the test set. In this step you'd normally generate examples or calculate anything of interest such as accuracy. Args: batch: The output of your data iterable, normally a :class:`~torch.utils.data.DataLoader`. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch. (only if multiple dataloaders used) Return: - :class:`~torch.Tensor` - The loss tensor - ``dict`` - A dictionary. Can include any keys, but must include the key ``'loss'``. - ``None`` - Skip to the next batch. .. code-block:: python # if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ... Examples:: # CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc}) If you pass in multiple test dataloaders, :meth:`test_step` will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders. .. code-block:: python # CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ... Note: If you don't need to test you don't need to implement this method. Note: When the :meth:`test_step` is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled. .. py:method:: training_step(batch, batch_idx) Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger. Args: batch: The output of your data iterable, normally a :class:`~torch.utils.data.DataLoader`. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch. (only if multiple dataloaders used) Return: - :class:`~torch.Tensor` - The loss tensor - ``dict`` - A dictionary which can include any keys, but must include the key ``'loss'`` in the case of automatic optimization. - ``None`` - In automatic optimization, this will skip to the next batch (but is not supported for multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning the loss is not required. In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific. Example:: def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss To use multiple optimizers, you can switch to 'manual optimization' and control their stepping: .. code-block:: python def __init__(self): super().__init__() self.automatic_optimization = False # Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx): opt1, opt2 = self.optimizers() # do training_step with encoder ... opt1.step() # do training_step with decoder ... opt2.step() Note: When ``accumulate_grad_batches`` > 1, the loss returned here will be automatically normalized by ``accumulate_grad_batches`` internally. .. py:method:: validation_step(batch, batch_idx) Operates on a single batch of data from the validation set. In this step you'd might generate examples or calculate anything of interest like accuracy. Args: batch: The output of your data iterable, normally a :class:`~torch.utils.data.DataLoader`. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch. (only if multiple dataloaders used) Return: - :class:`~torch.Tensor` - The loss tensor - ``dict`` - A dictionary. Can include any keys, but must include the key ``'loss'``. - ``None`` - Skip to the next batch. .. code-block:: python # if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ... Examples:: # CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc}) If you pass in multiple val dataloaders, :meth:`validation_step` will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders. .. code-block:: python # CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ... Note: If you don't need to validate you don't need to implement this method. Note: When the :meth:`validation_step` is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled. .. py:class:: _SETRMLAHead(channels, conv_norm, conv_act, in_channels, out_channels, num_classes, mla_channels = 128, up_scale = 4, kernel_size = 3, align_corners = True, dropout = 0.1, threshold = None) Bases: :py:obj:`torch.nn.Module` Multi level feature aggretation head of SETR (as in https://arxiv.org/pdf/2012.15840.pdf) Note: This has not been tested yet! Initialize internal Module state, shared by both nn.Module and ScriptModule. .. py:attribute:: cls_seg .. py:attribute:: dropout .. py:method:: forward(x) .. py:attribute:: num_classes .. py:attribute:: out_channels .. py:attribute:: threshold :value: None .. py:attribute:: up_convs .. py:class:: _SETRUPHead(channels, in_channels, num_classes, norm_layer, conv_norm, conv_act, num_convs, up_scale, kernel_size, align_corners, dropout, interpolate_mode) Bases: :py:obj:`torch.nn.Module` Naive upsampling head and Progressive upsampling head of SETR (as in https://arxiv.org/pdf/2012.15840.pdf). The SETR PUP Head. Parameters ---------- channels : int Number of output channels. in_channels : int Number of input channels. num_classes : int Number of output classes. norm_layer : nn.Module Normalization layer. conv_norm : nn.Module Convolutional normalization layer. conv_act : nn.Module Convolutional activation layer. num_convs : int Number of convolutional layers. up_scale : int Upsampling scale factor. kernel_size : int Kernel size for convolutional layers. align_corners : bool Whether to align corners during upsampling. dropout : float Dropout rate. interpolate_mode : str Interpolation mode for upsampling. Raises ------ AssertionError If kernel_size is not 1 or 3. .. py:attribute:: cls_seg .. py:attribute:: dropout .. py:method:: forward(x) .. py:attribute:: norm .. py:attribute:: num_classes .. py:attribute:: out_channels .. py:attribute:: up_convs .. py:class:: _SetR_PUP(image_size, patch_size, num_layers, num_heads, hidden_dim, mlp_dim, num_convs, num_classes, decoder_channels, up_scale, encoder_dropout, kernel_size, decoder_dropout, norm_layer, interpolate_mode, conv_norm, conv_act, align_corners, aux_output, aux_output_layers, original_resolution) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes the SETR PUP head. Parameters ---------- image_size : int or Tuple[int, int] The size of the input image. patch_size : int The size of each patch in the input image. num_layers : int The number of layers in the transformer encoder. num_heads : int The number of attention heads in the transformer encoder. hidden_dim : int The hidden dimension of the transformer encoder. mlp_dim : int The dimension of the feed-forward network in the transformer encoder num_convs : int The number of convolutional layers in the decoder. num_classes : int The number of output classes. decoder_channels : int The number of channels in the decoder. up_scale : int The scale factor for upsampling in the decoder. encoder_dropout : float The dropout rate for the transformer encoder. kernel_size : int The kernel size for the convolutional layers in the decoder. decoder_dropout : float The dropout rate for the decoder. norm_layer : nn.Module The normalization layer to be used. interpolate_mode : str The mode for interpolation during upsampling. conv_norm : nn.Module The normalization layer to be used in the decoder convolutional layers. conv_act : nn.Module The activation function to be used in the decoder convolutional layers. align_corners : bool Whether to align corners during upsampling. aux_output: bool Whether to use auxiliary outputs. If True, aux_output_layers must be provided. aux_output_layers: List[int], optional The layers to use for auxiliary outputs. Must have exacly 3 values. original_resolution: Tuple[int, int], optional The original resolution of the input image in the pre-training weights. When None, positional embeddings will not be interpolated. .. py:attribute:: aux_head1 .. py:attribute:: aux_head2 .. py:attribute:: aux_head3 .. py:attribute:: aux_output .. py:attribute:: aux_output_layers .. py:attribute:: decoder .. py:attribute:: encoder .. py:method:: forward(x) .. py:method:: load_backbone(path, freeze = False)