minerva.models.nets.tnc ======================= .. py:module:: minerva.models.nets.tnc Classes ------- .. autoapisummary:: minerva.models.nets.tnc.ConvBlock minerva.models.nets.tnc.DilatedConvEncoder minerva.models.nets.tnc.Discriminator_TNC minerva.models.nets.tnc.ResNetEncoder minerva.models.nets.tnc.RnnEncoder minerva.models.nets.tnc.SamePadConv minerva.models.nets.tnc.TSEncoder Module Contents --------------- .. py:class:: ConvBlock(in_channels, out_channels, kernel_size, dilation, final = False) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool A single block of dilated convolutional layers followed by a residual connection and activation. Parameters: ----------- - in_channels (int): Number of input channels to the first convolutional layer. - out_channels (int): Number of output channels from the final convolutional layer. - kernel_size (int): Size of the convolutional kernel. - dilation (int): Dilation factor for the convolutional layers. - final (bool, optional): Whether this is the final block in the sequence (default: False). .. py:attribute:: conv1 .. py:attribute:: conv2 .. py:method:: forward(x) .. py:attribute:: projector .. py:class:: DilatedConvEncoder(in_channels, channels, kernel_size) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool This module implements a stack of dilated convolutional blocks for feature extraction from sequential data. Parameters: ----------- - in_channels (int): Number of input channels to the first convolutional layer. - channels (list): List of integers specifying the number of output channels for each convolutional layer. - kernel_size (int): Size of the convolutional kernel. .. py:method:: forward(x) .. py:attribute:: net .. py:class:: Discriminator_TNC(input_size, max_pool = False) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool A discriminator model used for contrastive learning tasks, predicting whether two inputs belong to the same neighborhood in the feature space. Parameters ---------- input_size : int Dimensionality of each input. max_pool : bool, optional Whether to apply max pooling before feeding into the projection head (default is False). If using TS2Vec encoder, set to True; if using RNN, set to False. Examples -------- >>> device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') >>> discriminator = Discriminator_TNC(input_size=320, max_pool=True).to(device) >>> forward_ts2vec1 = torch.randn(12, 128, 320) # Example tensor with shape (batch_size, timesteps, encoding_size) >>> forward_ts2vec3 = torch.randn(12, 128, 320) # Another example tensor with shape (batch_size, timesteps, encoding_size) >>> output = discriminator(forward_ts2vec1, forward_ts2vec3) >>> print(output.shape) torch.Size([12]) >>> # Example with RNN encoder >>> rnn_encoder = RnnEncoder(hidden_size=100, in_channel=6, encoding_size=320, cell_type='GRU', num_layers=1, device=device, dropout=0.0, bidirectional=True).to(device) >>> element1 = torch.randn(12, 128, 6) # Batch size: 12, Time steps: 128, Input channels: 6 >>> forward_rnn1 = rnn_encoder(element1.to(device)) >>> forward_rnn2 = rnn_encoder(element1.to(device)) >>> discriminator = Discriminator_TNC(input_size=320, max_pool=False).to(device) >>> output = discriminator(forward_rnn1, forward_rnn2) >>> print(output.shape) torch.Size([12]) Notes ----- - The input tensors should have the shape (batch_size, input_size). - The output tensor will have the shape (batch_size,) representing the predicted probabilities. .. py:method:: forward(x, x_tild) Predict the probability of the two inputs belonging to the same neighborhood. Parameters: ----------- - x (torch.Tensor): Input tensor of shape (batch_size, input_size). - x_tild (torch.Tensor): Input tensor of shape (batch_size, input_size). Returns: -------- - p (torch.Tensor): Output tensor of shape (batch_size,) representing the predicted probabilities. .. py:attribute:: input_size .. py:attribute:: max_pool :value: False .. py:attribute:: model .. py:class:: ResNetEncoder(input_shape, residual_block_cls = ResNetBlock, activation_cls = torch.nn.ReLU, num_residual_blocks = 5, reduction_ratio = 2, avg_pooling = True, **residual_block_cls_kwargs) Bases: :py:obj:`minerva.models.nets.time_series.resnet._ResNet1D` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initialize internal Module state, shared by both nn.Module and ScriptModule. .. py:method:: forward(x) .. py:class:: RnnEncoder(hidden_size, in_channel, encoding_size, cell_type = 'GRU', num_layers = 1, device = 'cpu', dropout = 0, bidirectional = True, permute = False, squeeze = True) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes an RnnEncoder instance. This encoder utilizes a recurrent neural network (RNN) to encode sequential data, such as accelerometer and gyroscope readings from human activity recognition tasks. Parameters ---------- hidden_size : int Size of the hidden state in the RNN. in_channel : int Number of input channels (e.g., dimensions of accelerometer and gyroscope data). encoding_size : int Desired size of the output encoding. cell_type : str, optional Type of RNN cell to use (default is 'GRU'). Options include 'GRU', 'LSTM', etc. num_layers : int, optional Number of RNN layers (default is 1). device : str, optional Device to run the model on (default is 'cpu'). Options include 'cpu' and 'cuda'. dropout : float, optional Dropout probability (default is 0.0). bidirectional : bool, optional Whether the RNN is bidirectional (default is True). permute: bool, optional If `True` the input data will be permuted before passing through the model, by default False. squeeze: bool, optional If `True`, the outputs of RNN states is squeezed before passed to Linear layer. By default True. Examples -------- >>> device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') >>> encoder = RnnEncoder(hidden_size=100, in_channel=6, encoding_size=320, cell_type='GRU', num_layers=1, device=device, dropout=0.0, bidirectional=True).to(device) >>> element1 = torch.randn(32, 50, 6) # Batch size: 32, Time steps: 50, Input channels: 6 >>> encoding = encoder(element1.to(device)) >>> print(encoding.shape) torch.Size([32, 320]) Notes ----- - The input tensor should have the shape (batch_size, time_steps, in_channel). - The output tensor will have the shape (batch_size, encoding_size). .. py:attribute:: bidirectional :value: True .. py:attribute:: cell_type :value: 'GRU' .. py:attribute:: device :value: 'cpu' .. py:attribute:: encoding_size .. py:method:: forward(x) Forward pass for the RnnEncoder. Parameters ---------- x : torch.Tensor Input tensor of shape (batch_size, time_steps, in_channel). Returns ------- torch.Tensor Encoded tensor of shape (batch_size, encoding_size). .. py:attribute:: hidden_size .. py:attribute:: in_channel .. py:attribute:: nn .. py:attribute:: num_layers :value: 1 .. py:attribute:: permute :value: False .. py:attribute:: rnn .. py:attribute:: squeeze :value: True .. py:class:: SamePadConv(in_channels, out_channels, kernel_size, dilation = 1, groups = 1) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Purpose: ------- Implements a convolutional layer with padding to maintain the same output size as the input. Parameters: ----------- - in_channels (int): Number of input channels to the convolutional layer. - out_channels (int): Number of output channels from the convolutional layer. - kernel_size (int): Size of the convolutional kernel. - dilation (int, optional): Dilation factor for the convolutional layer (default: 1). - groups (int, optional): Number of blocked connections from input channels to output channels (default: 1). .. py:attribute:: conv .. py:method:: forward(x) .. py:attribute:: receptive_field .. py:attribute:: remove :value: 1 .. py:class:: TSEncoder(input_dims, output_dims, hidden_dims = 64, depth = 10, permute = False, encoder_cls = DilatedConvEncoder, encoder_cls_kwargs = {}) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Encoder utilizing dilated convolutional layers for encoding sequential data. Parameters ---------- input_dims : int Dimensionality of the input features. output_dims : int Desired dimensionality of the output features. hidden_dims : int, optional Number of hidden dimensions in the convolutional layers (default is 64). depth : int, optional Number of convolutional layers (default is 10). - permute : bool, optional If `True` the input data will be permuted before passing through the model, by default False. This should be removed after the encoder receives data in the shape (bs, channels, timesteps) Examples -------- >>> device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') >>> encoder = TSEncoder(input_dims=6, output_dims=320, hidden_dims=64, depth=10).to(device) >>> element1 = torch.randn(12, 128, 6) # Batch size: 12, Time steps: 128, Input channels: 6 >>> encoded_features = encoder(element1.to(device)) >>> print(encoded_features.shape) torch.Size([12, 128, 320]) Notes ----- - The input tensor should have the shape (batch_size, seq_len, input_dims). - The output tensor will have the shape (batch_size, seq_len, output_dims). - If the expected output tensor is of shape (batch_size, output_dims), consider using a pooling layer. One option is to use the `MaxPoolingTransposingSqueezingAdapter` adapter. at minerva/models/adapters.py .. py:attribute:: feature_extractor .. py:method:: forward(x, mask=None) Forward pass of the encoder. Parameters: ----------- - x (torch.Tensor): Input tensor of shape (batch_size, seq_len, input_dims). - mask (str, optional): Type of masking to apply (default: None). Returns: -------- - torch.Tensor: Encoded features of shape (batch_size, seq_len, output_dims). .. py:attribute:: hidden_dims :value: 64 .. py:attribute:: input_dims .. py:attribute:: input_fc .. py:attribute:: output_dims .. py:attribute:: permute :value: False .. py:attribute:: repr_dropout