minerva.models.ssl.byol ======================= .. py:module:: minerva.models.ssl.byol Classes ------- .. autoapisummary:: minerva.models.ssl.byol.BYOL minerva.models.ssl.byol.BYOLPredictionHead minerva.models.ssl.byol.BYOLProjectionHead minerva.models.ssl.byol.ProjectionHead Module Contents --------------- .. py:class:: BYOL(backbone = None, learning_rate = 0.025, schedule = 90000) Bases: :py:obj:`lightning.LightningModule` A Bootstrap Your Own Latent (BYOL) model for self-supervised learning. References ---------- Grill, J., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., ... & Valko, M. (2020). "Bootstrap your own latent-a new approach to self-supervised learning." Advances in neural information processing systems, 33, 21271-21284. Initializes the BYOL model. Parameters ---------- backbone: Optional[nn.Module] The backbone network for feature extraction. Defaults to ResNet18. learning_rate: float The learning rate for the optimizer. Defaults to 0.025. schedule: int The total number of steps for cosine decay scheduling. Defaults to 90000. .. py:attribute:: backbone .. py:attribute:: backbone_momentum .. py:method:: configure_optimizers() Configures the optimizer for the BYOL model. Returns ------- torch.optim.SGD Optimizer with configured learning rate. .. py:method:: cosine_schedule(step, max_steps, start_value, end_value, period = None) Uses cosine decay to gradually modify `start_value` to reach `end_value`. Parameters ---------- step : int Current step number. max_steps : int Total number of steps. start_value : float Starting value. end_value : float Target value. period : Optional[int] Steps over which cosine decay completes a full cycle. Defaults to max_steps. Returns ------- float Cosine decay value. .. py:attribute:: criterion .. py:method:: deactivate_requires_grad(model) Freezes the weights of the model. Parameters ---------- model : nn.Module Model to freeze. .. py:method:: forward(x) Forward pass for the BYOL model. Parameters ---------- x : Tensor Input image tensor. Returns ------- Tensor Output tensor after passing through the backbone, projection, and prediction heads. .. py:method:: forward_momentum(x) Forward pass using momentum encoder. Parameters ---------- x : Tensor Input image tensor. Returns ------- Tensor Output tensor after passing through the momentum backbone and projection head. .. py:attribute:: learning_rate :value: 0.025 .. py:attribute:: prediction_head .. py:attribute:: projection_head .. py:attribute:: projection_head_momentum .. py:attribute:: schedule_length :value: 90000 .. py:method:: training_step(batch, batch_idx) Performs a training step for BYOL. Parameters ---------- batch : Sequence[Tensor] A batch of input pairs (x0, x1). batch_idx : int Batch index. Returns ------- Tensor The computed loss for the current batch. .. py:method:: update_momentum(model, model_ema, m) Updates model weights using momentum. Parameters ---------- model : nn.Module Original model. model_ema : nn.Module Momentum model. m : float Momentum factor. .. py:class:: BYOLPredictionHead(input_dim = 256, hidden_dim = 4096, output_dim = 256) Bases: :py:obj:`ProjectionHead` Prediction head used for BYOL. "This MLP consists in a linear layer with output size 4096 followed by batch normalization, rectified linear units (ReLU), and a final linear layer with output dimension 256." [0] [0]: BYOL, 2020, https://arxiv.org/abs/2006.07733 Initialize internal Module state, shared by both nn.Module and ScriptModule. .. py:class:: BYOLProjectionHead(input_dim = 2048, hidden_dim = 4096, output_dim = 256) Bases: :py:obj:`ProjectionHead` Projection head used for BYOL. "This MLP consists in a linear layer with output size 4096 followed by batch normalization, rectified linear units (ReLU), and a final linear layer with output dimension 256." [0] [0]: BYOL, 2020, https://arxiv.org/abs/2006.07733 Initialize internal Module state, shared by both nn.Module and ScriptModule. .. py:attribute:: avgpool .. py:method:: preprocess_step(x) .. py:class:: ProjectionHead(blocks) Bases: :py:obj:`torch.nn.Module` Base class for all projection and prediction heads. Initialize internal Module state, shared by both nn.Module and ScriptModule. .. py:method:: forward(x) .. py:attribute:: layers .. py:method:: preprocess_step(x)