minerva.models.ssl ================== .. py:module:: minerva.models.ssl Submodules ---------- .. toctree:: :maxdepth: 1 /autoapi/minerva/models/ssl/autoencoder/index /autoapi/minerva/models/ssl/byol/index /autoapi/minerva/models/ssl/cpc/index /autoapi/minerva/models/ssl/simclr/index /autoapi/minerva/models/ssl/tfc/index /autoapi/minerva/models/ssl/tnc/index /autoapi/minerva/models/ssl/topological_autoencoder/index Classes ------- .. autoapisummary:: minerva.models.ssl.BYOL minerva.models.ssl.SimCLR Package Contents ---------------- .. py:class:: BYOL(backbone = None, learning_rate = 0.025, schedule = 90000) Bases: :py:obj:`lightning.LightningModule` A Bootstrap Your Own Latent (BYOL) model for self-supervised learning. References ---------- Grill, J., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., ... & Valko, M. (2020). "Bootstrap your own latent-a new approach to self-supervised learning." Advances in neural information processing systems, 33, 21271-21284. Initializes the BYOL model. Parameters ---------- backbone: Optional[nn.Module] The backbone network for feature extraction. Defaults to ResNet18. learning_rate: float The learning rate for the optimizer. Defaults to 0.025. schedule: int The total number of steps for cosine decay scheduling. Defaults to 90000. .. py:attribute:: backbone .. py:attribute:: backbone_momentum .. py:method:: configure_optimizers() Configures the optimizer for the BYOL model. Returns ------- torch.optim.SGD Optimizer with configured learning rate. .. py:method:: cosine_schedule(step, max_steps, start_value, end_value, period = None) Uses cosine decay to gradually modify `start_value` to reach `end_value`. Parameters ---------- step : int Current step number. max_steps : int Total number of steps. start_value : float Starting value. end_value : float Target value. period : Optional[int] Steps over which cosine decay completes a full cycle. Defaults to max_steps. Returns ------- float Cosine decay value. .. py:attribute:: criterion .. py:method:: deactivate_requires_grad(model) Freezes the weights of the model. Parameters ---------- model : nn.Module Model to freeze. .. py:method:: forward(x) Forward pass for the BYOL model. Parameters ---------- x : Tensor Input image tensor. Returns ------- Tensor Output tensor after passing through the backbone, projection, and prediction heads. .. py:method:: forward_momentum(x) Forward pass using momentum encoder. Parameters ---------- x : Tensor Input image tensor. Returns ------- Tensor Output tensor after passing through the momentum backbone and projection head. .. py:attribute:: learning_rate :value: 0.025 .. py:attribute:: prediction_head .. py:attribute:: projection_head .. py:attribute:: projection_head_momentum .. py:attribute:: schedule_length :value: 90000 .. py:method:: training_step(batch, batch_idx) Performs a training step for BYOL. Parameters ---------- batch : Sequence[Tensor] A batch of input pairs (x0, x1). batch_idx : int Batch index. Returns ------- Tensor The computed loss for the current batch. .. py:method:: update_momentum(model, model_ema, m) Updates model weights using momentum. Parameters ---------- model : nn.Module Original model. model_ema : nn.Module Momentum model. m : float Momentum factor. .. py:class:: SimCLR(backbone, projection_head, flatten = True, temperature = 0.5, lr = 0.001) Bases: :py:obj:`lightning.LightningModule` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes the SimCLR model. Parameters ---------- backbone : nn.Module Backbone model for feature extraction. projection_head : nn.Module Projection head model. flatten : bool, optional, default=True Whether to flatten the output of the backbone model, by default True temperature : float, optional, default=0.5 Temperature for the NT-Xent loss, by default 0.5 lr : float, optional, default=1e-3 Learning rate for the optimizer, by default 1e-3 .. py:method:: _single_step(batch) Performs a single forward and loss computation step. Parameters ---------- batch : Tuple[Tuple[Tensor, Tensor], Any] Input batch containing images and optional labels. Returns ------- Tensor Computed loss for the batch. .. py:attribute:: backbone .. py:method:: configure_optimizers() Configures the optimizer for training. Returns ------- torch.optim.Optimizer Optimizer instance. .. py:attribute:: flatten :value: True .. py:method:: forward(x) Forward pass through the SimCLR model. Parameters ---------- x : Tuple[Tensor, Tensor] Input tensor of features with shape (batch_size, input_dim). Returns ------- Tensor Output tensor of projected features with shape (batch_size, output_dim). .. py:attribute:: loss .. py:attribute:: lr :value: 0.001 .. py:method:: predict_step(batch, batch_idx, dataloader_idx = None) Predict step. Parameters ---------- batch : Tuple[Tuple[Tensor, Tensor], Any] Input batch containing images and optional labels. batch_idx : int Index of the current batch. dataloader_idx : Optional[int], optional Index of the dataloader, by default None Returns ------- Tensor Computed loss for the batch. .. py:attribute:: projector .. py:method:: training_step(batch, batch_idx) Training step. Parameters ---------- batch : Tuple[Tuple[Tensor, Tensor], Any] Input batch containing images and optional labels. batch_idx : int Index of the current batch. Returns ------- Tensor Computed loss for the batch. .. py:method:: validation_step(batch, batch_idx) Validation step. Parameters ---------- batch : Tuple[Tuple[Tensor, Tensor], Any] Input batch containing images and optional labels. batch_idx : int Index of the current batch. Returns ------- Tensor Computed loss for the batch.