minerva.models.ssl.simclr ========================= .. py:module:: minerva.models.ssl.simclr Classes ------- .. autoapisummary:: minerva.models.ssl.simclr.SimCLR Module Contents --------------- .. py:class:: SimCLR(backbone, projection_head, flatten = True, temperature = 0.5, lr = 0.001) Bases: :py:obj:`lightning.LightningModule` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes the SimCLR model. Parameters ---------- backbone : nn.Module Backbone model for feature extraction. projection_head : nn.Module Projection head model. flatten : bool, optional, default=True Whether to flatten the output of the backbone model, by default True temperature : float, optional, default=0.5 Temperature for the NT-Xent loss, by default 0.5 lr : float, optional, default=1e-3 Learning rate for the optimizer, by default 1e-3 .. py:method:: _single_step(batch) Performs a single forward and loss computation step. Parameters ---------- batch : Tuple[Tuple[Tensor, Tensor], Any] Input batch containing images and optional labels. Returns ------- Tensor Computed loss for the batch. .. py:attribute:: backbone .. py:method:: configure_optimizers() Configures the optimizer for training. Returns ------- torch.optim.Optimizer Optimizer instance. .. py:attribute:: flatten :value: True .. py:method:: forward(x) Forward pass through the SimCLR model. Parameters ---------- x : Tuple[Tensor, Tensor] Input tensor of features with shape (batch_size, input_dim). Returns ------- Tensor Output tensor of projected features with shape (batch_size, output_dim). .. py:attribute:: loss .. py:attribute:: lr :value: 0.001 .. py:method:: predict_step(batch, batch_idx, dataloader_idx = None) Predict step. Parameters ---------- batch : Tuple[Tuple[Tensor, Tensor], Any] Input batch containing images and optional labels. batch_idx : int Index of the current batch. dataloader_idx : Optional[int], optional Index of the dataloader, by default None Returns ------- Tensor Computed loss for the batch. .. py:attribute:: projector .. py:method:: training_step(batch, batch_idx) Training step. Parameters ---------- batch : Tuple[Tuple[Tensor, Tensor], Any] Input batch containing images and optional labels. batch_idx : int Index of the current batch. Returns ------- Tensor Computed loss for the batch. .. py:method:: validation_step(batch, batch_idx) Validation step. Parameters ---------- batch : Tuple[Tuple[Tensor, Tensor], Any] Input batch containing images and optional labels. batch_idx : int Index of the current batch. Returns ------- Tensor Computed loss for the batch.