minerva.models.ssl.tnc ====================== .. py:module:: minerva.models.ssl.tnc Classes ------- .. autoapisummary:: minerva.models.ssl.tnc.TNC Module Contents --------------- .. py:class:: TNC(backbone, projection_head, loss_fn = torch.nn.BCEWithLogitsLoss(), learning_rate = 1e-05, w = 0.05) Bases: :py:obj:`lightning.LightningModule` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool This class defines a the TNC technique using a backbone neural network (backbone) and a projection head neural network (projection_head) for training. Parameters: ----------- - backbone (torch.nn.Module): The feature extraction backbone network, such as an encoder or a pre-trained model. - projection_head (torch.nn.Module): The projection head network that maps feature vectors into a latent space. - loss_fn (torch.nn.Module, optional): The loss function used for training (default: torch.nn.BCEWithLogitsLoss()). - learning_rate (float, optional): The learning rate for the optimizer (default: 0.00001). - w (float, optional): The weight for the negative loss term (default: 0.05). Examples: ---------- >>> backbone = RnnEncoder(hidden_size=100, in_channel=6, encoding_size=320, cell_type='GRU', num_layers=1) >>> projection_head = Discriminator_TNC(input_size=320, max_pool=False) >>> model = TNC(backbone=backbone, projection_head=projection_head, learning_rate=0.0001, w=0.1) >>> backbone = TSEncoder(input_dims=6, output_dims=320, hidden_dims=64, depth=10) >>> projection_head = Discriminator_TNC(input_size=320, max_pool=True) >>> model = TNC(backbone=backbone, projection_head=projection_head, loss_fn=torch.nn.CrossEntropyLoss(), learning_rate=0.001, w=0.05) .. py:attribute:: backbone .. py:method:: configure_optimizers() Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode. Return: Any of these 6 options. - **Single optimizer**. - **List or Tuple** of optimizers. - **Two lists** - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple ``lr_scheduler_config``). - **Dictionary**, with an ``"optimizer"`` key, and (optionally) a ``"lr_scheduler"`` key whose value is a single LR scheduler or ``lr_scheduler_config``. - **None** - Fit will run without any optimizer. The ``lr_scheduler_config`` is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below. .. code-block:: python lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, } When there are schedulers in which the ``.step()`` method is conditioned on a value, such as the :class:`torch.optim.lr_scheduler.ReduceLROnPlateau` scheduler, Lightning requires that the ``lr_scheduler_config`` contains the keyword ``"monitor"`` set to the metric name that the scheduler should be conditioned on. .. testcode:: # The ReduceLROnPlateau scheduler requires a monitor def configure_optimizers(self): optimizer = Adam(...) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau(optimizer, ...), "monitor": "metric_to_track", "frequency": "indicates how often the metric is updated", # If "monitor" references validation metrics, then "frequency" should be set to a # multiple of "trainer.check_val_every_n_epoch". }, } # In the case of two optimizers, only one using the ReduceLROnPlateau scheduler def configure_optimizers(self): optimizer1 = Adam(...) optimizer2 = SGD(...) scheduler1 = ReduceLROnPlateau(optimizer1, ...) scheduler2 = LambdaLR(optimizer2, ...) return ( { "optimizer": optimizer1, "lr_scheduler": { "scheduler": scheduler1, "monitor": "metric_to_track", }, }, {"optimizer": optimizer2, "lr_scheduler": scheduler2}, ) Metrics can be made available to monitor by simply logging it using ``self.log('metric_to_track', metric_val)`` in your :class:`~lightning.pytorch.core.LightningModule`. Note: Some things to know: - Lightning calls ``.backward()`` and ``.step()`` automatically in case of automatic optimization. - If a learning rate scheduler is specified in ``configure_optimizers()`` with key ``"interval"`` (default "epoch") in the scheduler configuration, Lightning will call the scheduler's ``.step()`` method automatically in case of automatic optimization. - If you use 16-bit precision (``precision=16``), Lightning will automatically handle the optimizer. - If you use :class:`torch.optim.LBFGS`, Lightning handles the closure function automatically for you. - If you use multiple optimizers, you will have to switch to 'manual optimization' mode and step them yourself. - If you need to control how often the optimizer steps, override the :meth:`optimizer_step` hook. .. py:method:: forward(x_t, X_close, X_distant) Forward pass through the backbone and projection head networks. Parameters: ----------- x_t : torch.Tensor Tensor of shape (batch_size, seq_length, feature_size) representing the primary input. X_close : torch.Tensor Tensor of shape (batch_size, seq_length, feature_size) representing close samples. X_distant : torch.Tensor Tensor of shape (batch_size, seq_length, feature_size) representing distant samples. Returns: -------- d_p : torch.Tensor Projection head output for positive (x_t, X_close) pairs. d_n : torch.Tensor Projection head output for negative (x_t, X_distant) pairs. .. py:attribute:: learning_rate :value: 1e-05 .. py:attribute:: loss_fn .. py:attribute:: mc_sample_size :value: 5 .. py:attribute:: projection_head .. py:method:: training_step(batch) Single training step using contrastive loss. Parameters: ----------- - batch (tuple of torch.Tensor): Batch of input data consisting of (x_t, X_close, X_distant). Returns: -------- - loss (torch.Tensor): Calculated contrastive loss for the current batch. .. py:method:: validation_step(batch, batch_idx) Single validation step using contrastive loss. Parameters: ----------- - batch (tuple of torch.Tensor): Batch of input data consisting of (x_t, X_close, X_distant). Returns: -------- - val_loss (torch.Tensor): Calculated contrastive loss for the current batch. .. py:attribute:: w :value: 0.05