minerva.models.ssl.topological_autoencoder ========================================== .. py:module:: minerva.models.ssl.topological_autoencoder Classes ------- .. autoapisummary:: minerva.models.ssl.topological_autoencoder.TopologicalAutoencoder Module Contents --------------- .. py:class:: TopologicalAutoencoder(encoder, decoder, topological_loss = None, reconstruction_loss = None, lambda_param = 0.001, learning_rate = 0.001) Bases: :py:obj:`lightning.LightningModule` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Topological autoencoder model. Parameters ---------- encoder : torch.nn.Module Encoder model decoder : torch.nn.Module Decoder model topological_loss : torch.nn.Module, optional Topological loss, by default None reconstruction_loss : torch.nn.Module, optional Reconstruction loss, by default None lambda_param : float, optional Weight of the topological loss, by default 1e-3 learning_rate : float, optional Learning rate, by default 1e-3 .. py:method:: configure_optimizers() Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode. Return: Any of these 6 options. - **Single optimizer**. - **List or Tuple** of optimizers. - **Two lists** - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple ``lr_scheduler_config``). - **Dictionary**, with an ``"optimizer"`` key, and (optionally) a ``"lr_scheduler"`` key whose value is a single LR scheduler or ``lr_scheduler_config``. - **None** - Fit will run without any optimizer. The ``lr_scheduler_config`` is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below. .. code-block:: python lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, } When there are schedulers in which the ``.step()`` method is conditioned on a value, such as the :class:`torch.optim.lr_scheduler.ReduceLROnPlateau` scheduler, Lightning requires that the ``lr_scheduler_config`` contains the keyword ``"monitor"`` set to the metric name that the scheduler should be conditioned on. .. testcode:: # The ReduceLROnPlateau scheduler requires a monitor def configure_optimizers(self): optimizer = Adam(...) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau(optimizer, ...), "monitor": "metric_to_track", "frequency": "indicates how often the metric is updated", # If "monitor" references validation metrics, then "frequency" should be set to a # multiple of "trainer.check_val_every_n_epoch". }, } # In the case of two optimizers, only one using the ReduceLROnPlateau scheduler def configure_optimizers(self): optimizer1 = Adam(...) optimizer2 = SGD(...) scheduler1 = ReduceLROnPlateau(optimizer1, ...) scheduler2 = LambdaLR(optimizer2, ...) return ( { "optimizer": optimizer1, "lr_scheduler": { "scheduler": scheduler1, "monitor": "metric_to_track", }, }, {"optimizer": optimizer2, "lr_scheduler": scheduler2}, ) Metrics can be made available to monitor by simply logging it using ``self.log('metric_to_track', metric_val)`` in your :class:`~lightning.pytorch.core.LightningModule`. Note: Some things to know: - Lightning calls ``.backward()`` and ``.step()`` automatically in case of automatic optimization. - If a learning rate scheduler is specified in ``configure_optimizers()`` with key ``"interval"`` (default "epoch") in the scheduler configuration, Lightning will call the scheduler's ``.step()`` method automatically in case of automatic optimization. - If you use 16-bit precision (``precision=16``), Lightning will automatically handle the optimizer. - If you use :class:`torch.optim.LBFGS`, Lightning handles the closure function automatically for you. - If you use multiple optimizers, you will have to switch to 'manual optimization' mode and step them yourself. - If you need to control how often the optimizer steps, override the :meth:`optimizer_step` hook. .. py:attribute:: decoder .. py:attribute:: encoder .. py:method:: forward(x) Same as :meth:`torch.nn.Module.forward`. Args: *args: Whatever you decide to pass into the forward method. **kwargs: Keyword arguments are also possible. Return: Your model's output .. py:attribute:: lambda_param :value: 0.001 .. py:attribute:: learning_rate :value: 0.001 .. py:attribute:: reconstruction_loss :value: None .. py:attribute:: topological_loss :value: None .. py:method:: training_step(batch, batch_idx) Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger. Args: batch: The output of your data iterable, normally a :class:`~torch.utils.data.DataLoader`. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch. (only if multiple dataloaders used) Return: - :class:`~torch.Tensor` - The loss tensor - ``dict`` - A dictionary which can include any keys, but must include the key ``'loss'`` in the case of automatic optimization. - ``None`` - In automatic optimization, this will skip to the next batch (but is not supported for multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning the loss is not required. In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific. Example:: def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss To use multiple optimizers, you can switch to 'manual optimization' and control their stepping: .. code-block:: python def __init__(self): super().__init__() self.automatic_optimization = False # Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx): opt1, opt2 = self.optimizers() # do training_step with encoder ... opt1.step() # do training_step with decoder ... opt2.step() Note: When ``accumulate_grad_batches`` > 1, the loss returned here will be automatically normalized by ``accumulate_grad_batches`` internally. .. py:method:: validation_step(batch, batch_idx) Operates on a single batch of data from the validation set. In this step you'd might generate examples or calculate anything of interest like accuracy. Args: batch: The output of your data iterable, normally a :class:`~torch.utils.data.DataLoader`. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch. (only if multiple dataloaders used) Return: - :class:`~torch.Tensor` - The loss tensor - ``dict`` - A dictionary. Can include any keys, but must include the key ``'loss'``. - ``None`` - Skip to the next batch. .. code-block:: python # if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ... Examples:: # CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc}) If you pass in multiple val dataloaders, :meth:`validation_step` will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders. .. code-block:: python # CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ... Note: If you don't need to validate you don't need to implement this method. Note: When the :meth:`validation_step` is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.