minerva.transforms.tfc ====================== .. py:module:: minerva.transforms.tfc Classes ------- .. autoapisummary:: minerva.transforms.tfc.TFC_Transforms Module Contents --------------- .. py:class:: TFC_Transforms Bases: :py:obj:`minerva.transforms.transform._Transform` Transformations used in the TFC model. It consists of time and frequency domain data augmentation. .. py:method:: DataTransform_FD(sample) Weak and strong augmentations. Consists of jittering and adding or removing frequency components. Parameters ---------- - sample: np.ndarray The input data to be augmented Returns ------- - np.ndarray The augmented data .. py:method:: DataTransform_TD(sample, jitter_ratio = 0.8) Weak and strong augmentations. Consists of jittering and removing time components. Parameters ---------- - sample: np.ndarray The input data to be augmented - jitter_ratio: float The ratio of the jittering transformation Returns ------- - np.ndarray The augmented data .. py:method:: __call__(x) Method that applies the transformations to the input data. Parameters ---------- - x: Union[np.ndarray, torch.Tensor] The input data to be transformed Returns ------- - Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor] A tuple with the original data, the transformed data in the time domain the frequency version of the data and the tranformed data in frequency domain .. py:method:: add_frequency(x, pertub_ratio = 0) function to add frequency components to the input data. Parameters ---------- - x: np.ndarray The input data to be augmented - pertub_ratio: float The ratio of the frequency components to be added Returns ------- - np.ndarray The data with added frequency components .. py:method:: jitter(x, sigma = 0.8) Add noise to the input data. Parameters ---------- - x: np.ndarray The input data to be augmented - sigma: float The standard deviation of the noise Returns ------- - np.ndarray The data with added noise .. py:method:: one_hot_encoding(X, n_values = None) One-hot encoding of the input data Parameters ---------- - X: np.ndarray The input data to be encoded - n_values: int The number of classes in the data. If None, the number of classes is inferred from the data Returns ------- - np.ndarray The one-hot encoded data .. py:method:: remove_frequency(x, maskout_ratio = 0) function to remove frequency components from the input data. Parameters ---------- - x: np.ndarray The input data to be augmented - maskout_ratio: float The ratio of the frequency components to be removed Returns ------- - np.ndarray The data with removed frequency components