minerva.transforms.transform ============================ .. py:module:: minerva.transforms.transform Classes ------- .. autoapisummary:: minerva.transforms.transform.CastTo minerva.transforms.transform.ColorJitter minerva.transforms.transform.ContrastiveTransform minerva.transforms.transform.Crop minerva.transforms.transform.Flip minerva.transforms.transform.Gradient minerva.transforms.transform.GrayScale minerva.transforms.transform.Identity minerva.transforms.transform.Indexer minerva.transforms.transform.Normalize minerva.transforms.transform.PadCrop minerva.transforms.transform.Padding minerva.transforms.transform.PerlinMasker minerva.transforms.transform.Repeat minerva.transforms.transform.Rotation minerva.transforms.transform.Solarize minerva.transforms.transform.Squeeze minerva.transforms.transform.TransformPipeline minerva.transforms.transform.Transpose minerva.transforms.transform.Unsqueeze minerva.transforms.transform._Transform Module Contents --------------- .. py:class:: CastTo(dtype) Bases: :py:obj:`_Transform` Cast the input data to the specified data type. Cast the input data to the specified data type. Parameters ---------- dtype : type The data type to which the input data will be cast. .. py:method:: __call__(x) Cast the input data to the specified data type. .. py:method:: __str__() .. py:attribute:: dtype .. py:class:: ColorJitter(brightness = 1.0, contrast = 1.0, saturation = 1.0, hue = 0.0) Bases: :py:obj:`_Transform` This class is a base class for all transforms. Transforms is just a fancy word for a function that takes an input and returns an output. The input and output can be anything. However, transforms operates over a single sample of data and does not require any additional information to perform the transformation. The __call__ method should be overridden in subclasses to define the transformation logic. Applies fixed adjustments to brightness, contrast, saturation, and hue to an input image. Parameters ---------- brightness : float, optional Fixed factor for brightness adjustment. A value of 1.0 means no change. Defaults to 1.0. contrast : float, optional Fixed factor for contrast adjustment. A value of 1.0 means no change. Defaults to 1.0. saturation : float, optional Fixed factor for saturation adjustment. A value of 1.0 means no change. Defaults to 1.0. hue : float, optional Fixed degree shift for hue adjustment, in the range [-180, 180]. Defaults to 0.0. Returns ------- np.ndarray The transformed image with fixed brightness, contrast, saturation, and hue adjustments applied. .. py:method:: __call__(image) Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data. .. py:attribute:: brightness :value: 1.0 .. py:attribute:: contrast :value: 1.0 .. py:attribute:: hue :value: 0.0 .. py:attribute:: saturation :value: 1.0 .. py:class:: ContrastiveTransform(transform) Bases: :py:obj:`_Transform` This class is a base class for all transforms. Transforms is just a fancy word for a function that takes an input and returns an output. The input and output can be anything. However, transforms operates over a single sample of data and does not require any additional information to perform the transformation. The __call__ method should be overridden in subclasses to define the transformation logic. .. py:method:: __call__(x) Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data. .. py:method:: __str__() .. py:attribute:: transform .. py:class:: Crop(output_size, pad_mode = 'reflect', coords = (0, 0)) Bases: :py:obj:`_Transform` This class is a base class for all transforms. Transforms is just a fancy word for a function that takes an input and returns an output. The input and output can be anything. However, transforms operates over a single sample of data and does not require any additional information to perform the transformation. The __call__ method should be overridden in subclasses to define the transformation logic. Crops the input image to a specified output size, with optional padding if needed. Parameters ---------- output_size : Tuple[int, int] Desired output size as (height, width). pad_mode : str, optional Padding mode used if output size is larger than input size. Defaults to 'reflect'. coords : Tuple[int, int], optional Top-left coordinates for the crop box. Values must go from 0 to 1 indicating the relative position on where the new top-left corner can be set, taking in consideration the new size Returns ------- np.ndarray Cropped image, padded as necessary. .. py:method:: __call__(image) Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data. .. py:attribute:: coords :value: (0, 0) .. py:attribute:: output_size .. py:attribute:: pad_mode :value: 'reflect' .. py:class:: Flip(axis = 0) Bases: :py:obj:`_Transform` Flip the input data along the specified axis. Flip the input data along the specified axis. Parameters ---------- axis : int | List[int], optional One or more axis to flip the input data along, by default 0. If a list of axis is provided, the input data is flipped along all the specified axis in the order they are provided. .. py:method:: __call__(x) Flip the input data along the specified axis. if axis is an integer, the input data is flipped along the specified axis. if axis is a list of integers, the input data is flipped along all the specified axis in the order they are provided. The input must have the same, or less, number of dimensions as the length of the list of axis. .. py:method:: __str__() .. py:attribute:: axis :value: 0 .. py:class:: Gradient(direction) Bases: :py:obj:`_Transform` This class is a base class for all transforms. Transforms is just a fancy word for a function that takes an input and returns an output. The input and output can be anything. However, transforms operates over a single sample of data and does not require any additional information to perform the transformation. The __call__ method should be overridden in subclasses to define the transformation logic. direction: 0 -> Gradient along the x-axis (width) 1 -> Gradient along the y-axis (height) .. py:method:: __call__(x) Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data. .. py:attribute:: direction .. py:method:: generate_gradient(shape) Inputs in format (H, W) Outputs a gradient from 0 to 1 in either x or y direction based on the direction parameter .. py:class:: GrayScale(gray = 0.0) Bases: :py:obj:`_Transform` This class is a base class for all transforms. Transforms is just a fancy word for a function that takes an input and returns an output. The input and output can be anything. However, transforms operates over a single sample of data and does not require any additional information to perform the transformation. The __call__ method should be overridden in subclasses to define the transformation logic. Converts an image to grayscale with a specified gray value. Parameters ---------- gray : float, optional Gray value to use when converting the image. Defaults to 0.0. Returns ------- np.ndarray Grayscale image in RGB format with all channels set to `gray`. .. py:method:: __call__(image) Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data. .. py:attribute:: gray :value: 0.0 .. py:class:: Identity Bases: :py:obj:`_Transform` This class is a dummy transform that does nothing. It is useful when you want to skip a transform in a pipeline. .. py:method:: __call__(x) Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data. .. py:method:: __str__() .. py:class:: Indexer(index) Bases: :py:obj:`_Transform` This class is a base class for all transforms. Transforms is just a fancy word for a function that takes an input and returns an output. The input and output can be anything. However, transforms operates over a single sample of data and does not require any additional information to perform the transformation. The __call__ method should be overridden in subclasses to define the transformation logic. This transform extracts a single channel from a multi-channel image. Parameters ---------- index : int The index of the channel to extract. .. py:method:: __call__(x) Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data. .. py:method:: __str__() .. py:attribute:: index .. py:class:: Normalize(mean, std, to_rgb=False, normalize_labels=False) Bases: :py:obj:`_Transform` This class is a base class for all transforms. Transforms is just a fancy word for a function that takes an input and returns an output. The input and output can be anything. However, transforms operates over a single sample of data and does not require any additional information to perform the transformation. The __call__ method should be overridden in subclasses to define the transformation logic. Normalize the input data using the provided means and standard deviations. Parameters ---------- mean : List[float] List of means for each channel. std : List[float] List of standard deviations for each channel. to_rgb : bool, optional Convert grayscale images to RGB format, by default False. normalize_labels : bool, optional Normalize label images, by default False. .. py:method:: __call__(data) Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data. .. py:method:: __str__() .. py:attribute:: mean .. py:attribute:: normalize_labels :value: False .. py:attribute:: std .. py:attribute:: to_rgb :value: False .. py:class:: PadCrop(target_h_size, target_w_size, padding_mode = 'reflect', seed = None, constant_values = 0) Bases: :py:obj:`_Transform` This class is a base class for all transforms. Transforms is just a fancy word for a function that takes an input and returns an output. The input and output can be anything. However, transforms operates over a single sample of data and does not require any additional information to perform the transformation. The __call__ method should be overridden in subclasses to define the transformation logic. Transforms image and pads or crops it to the target size. If the target size is larger than the input size, the image is padded, else, the image is cropped. The same happens for both height and width. The padding mode can be specified, as well as the seed for the random number generator. For padding, the padding is applied symmetrically on both sides of the image, thus, image will be centered in the padded image. For cropping, the crop is applied from a random position in the image. Image is expected to be in C x H x W, or H x W format. Parameters ---------- target_h_size : int Desired height size. target_w_size : int Desired width size. padding_mode : str, optional The padding mode to use, by default "reflect" seed : int, optional The seed for the random number generator. It is used to generate the random crop position. By default, None. constant_values : int, optional If padding mode is 'constant', the value to use for padding. By default 0. .. py:method:: __call__(x) Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data. .. py:method:: __str__() .. py:attribute:: constant_values :value: 0 .. py:attribute:: padding_mode :value: 'reflect' .. py:attribute:: rng .. py:attribute:: seed :value: None .. py:attribute:: target_h_size .. py:attribute:: target_w_size .. py:class:: Padding(target_h_size, target_w_size) Bases: :py:obj:`_Transform` This class is a base class for all transforms. Transforms is just a fancy word for a function that takes an input and returns an output. The input and output can be anything. However, transforms operates over a single sample of data and does not require any additional information to perform the transformation. The __call__ method should be overridden in subclasses to define the transformation logic. .. py:method:: __call__(x) Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data. .. py:attribute:: target_h_size .. py:attribute:: target_w_size .. py:class:: PerlinMasker(octaves, scale = 1) Bases: :py:obj:`_Transform` Zeroes entries of a tensor according to the sign of Perlin noise. Seed for the noise generator given by torch.randint Zeroes entries of a tensor according to the sign of Perlin noise. Seed for the noise generator given by torch.randint Parameters ---------- octaves: int Level of detail for the Perlin noise generator scale: float = 1 Optionally rescale the Perlin noise. Default is 1 (no rescaling) .. py:method:: __call__(x) Zeroes entries of a tensor according to the sign of Perlin noise. Parameters ---------- x: np.ndarray The tensor whose entries to zero. .. py:attribute:: octaves .. py:attribute:: scale :value: 1 .. py:class:: Repeat(axis, n_repetitions) Bases: :py:obj:`_Transform` This class is a base class for all transforms. Transforms is just a fancy word for a function that takes an input and returns an output. The input and output can be anything. However, transforms operates over a single sample of data and does not require any additional information to perform the transformation. The __call__ method should be overridden in subclasses to define the transformation logic. This transform repeats the input data along the specified axis. Parameters ---------- axis : int The axis along which to repeat the input data. n_repetitions : int The number of repetitions. .. py:method:: __call__(x) Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data. .. py:method:: __str__() .. py:attribute:: axis .. py:attribute:: n_repetitions .. py:class:: Rotation(degrees) Bases: :py:obj:`_Transform` This class is a base class for all transforms. Transforms is just a fancy word for a function that takes an input and returns an output. The input and output can be anything. However, transforms operates over a single sample of data and does not require any additional information to perform the transformation. The __call__ method should be overridden in subclasses to define the transformation logic. Rotates the image by a specified angle. Parameters ---------- degrees : float Angle in degrees to rotate the image. Returns ------- np.ndarray Rotated image with reflection padding. .. py:method:: __call__(image) Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data. .. py:attribute:: degrees .. py:class:: Solarize(threshold = 128) Bases: :py:obj:`_Transform` This class is a base class for all transforms. Transforms is just a fancy word for a function that takes an input and returns an output. The input and output can be anything. However, transforms operates over a single sample of data and does not require any additional information to perform the transformation. The __call__ method should be overridden in subclasses to define the transformation logic. Solarizes the image by inverting pixel values above a specified threshold. Parameters ---------- threshold : int, optional Intensity threshold for inversion, default is 128. Returns ------- np.ndarray Solarized image with inverted pixel values above threshold. .. py:method:: __call__(image) Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data. .. py:attribute:: threshold :value: 128 .. py:class:: Squeeze(axis) Bases: :py:obj:`_Transform` Remove single-dimensional entries from the shape of an array. Remove single-dimensional entries from the shape of an array. Parameters ---------- axis : int The position of the axis to be removed. .. py:method:: __call__(x) Remove single-dimensional entries from the shape of an array. .. py:method:: __str__() .. py:attribute:: axis .. py:class:: TransformPipeline(transforms) Bases: :py:obj:`_Transform` Apply a sequence of transforms to a single sample of data and return the transformed data. Apply a sequence of transforms to a single sample of data and return the transformed data. Parameters ---------- transforms : List[_Transform] A list of transforms to be applied to the input data. .. py:method:: __add__(other) Add a transform to the pipeline. .. py:method:: __call__(x) Apply a sequence of transforms to a single sample of data and return the transformed data. .. py:method:: __radd__(other) Add a transform to the pipeline. .. py:method:: __str__() .. py:attribute:: transforms .. py:class:: Transpose(axes) Bases: :py:obj:`_Transform` Reorder the axes of numpy arrays. Reorder the axes of numpy arrays. Parameters ---------- axes : int The order of the new axes .. py:method:: __call__(x) Reorder the axes of numpy arrays. .. py:method:: __str__() .. py:attribute:: axes .. py:class:: Unsqueeze(axis) Bases: :py:obj:`_Transform` Add a new axis to the input data at the specified position. Add a new axis to the input data at the specified position. Parameters ---------- axis : int The position of the new axis to be added. .. py:method:: __call__(x) Add a new axis to the input data at the specified position. .. py:method:: __str__() .. py:attribute:: axis .. py:class:: _Transform This class is a base class for all transforms. Transforms is just a fancy word for a function that takes an input and returns an output. The input and output can be anything. However, transforms operates over a single sample of data and does not require any additional information to perform the transformation. The __call__ method should be overridden in subclasses to define the transformation logic. .. py:method:: __call__(*args, **kwargs) :abstractmethod: Implement the transformation logic in this method. Usually, the transformation is applied on a single sample of data.