minerva.utils.upsample ====================== .. py:module:: minerva.utils.upsample Classes ------- .. autoapisummary:: minerva.utils.upsample.Upsample Functions --------- .. autoapisummary:: minerva.utils.upsample.resize Module Contents --------------- .. py:class:: Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initialize internal Module state, shared by both nn.Module and ScriptModule. .. py:attribute:: align_corners :value: None .. py:method:: forward(x) .. py:attribute:: mode :value: 'nearest' .. py:attribute:: size :value: None .. py:function:: resize(input, size=None, scale_factor=None, mode='nearest', align_corners=None, warning=True)