Source code for dasf.datasets.datasets

#!/usr/bin/env python3

""" Module representing all types of dataset generators. """

from dask_ml.datasets import make_blobs as make_blobs_MCPU
from sklearn.datasets import make_blobs as make_blobs_CPU

try:
    import cupy as cp
    from cuml.dask.datasets import make_blobs as make_blobs_MGPU
    from cuml.datasets import make_blobs as make_blobs_GPU
except ImportError:  # pragma: no cover
    pass

from dask_ml.datasets import make_classification as make_classification_MCPU
from sklearn.datasets import make_classification as make_classification_CPU

try:
    from cuml.dask.datasets import make_classification as make_classification_MGPU
    from cuml.datasets import make_classification as make_classification_GPU
except ImportError:  # pragma: no cover
    pass

from dask_ml.datasets import make_regression as make_regression_MCPU
from sklearn.datasets import make_regression as make_regression_CPU

try:
    from cuml.dask.datasets import make_regression as make_regression_MGPU
    from cuml.datasets import make_regression as make_regression_GPU
except ImportError:  # pragma: no cover
    pass

from dasf.utils.funcs import is_dask_gpu_supported, is_dask_supported, is_gpu_supported
from dasf.utils.types import is_cpu_array


[docs] class make_blobs: """Generate isotropic Gaussian blobs for clustering. For an example of usage, see :ref:`sphx_glr_auto_examples_datasets_plot_random_dataset.py`. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int or array-like, default=100 If int, it is the total number of points equally divided among clusters. If array-like, each element of the sequence indicates the number of samples per cluster. .. versionchanged:: v0.20 one can now pass an array-like to the ``n_samples`` parameter n_features : int, default=2 The number of features for each sample. centers : int or array-like of shape (n_centers, n_features), default=None The number of centers to generate, or the fixed center locations. If n_samples is an int and centers is None, 3 centers are generated. If n_samples is array-like, centers must be either None or an array of length equal to the length of n_samples. cluster_std : float or array-like of float, default=1.0 The standard deviation of the clusters. center_box : tuple of float (min, max), default=(-10.0, 10.0) The bounding box for each cluster center when centers are generated at random. shuffle : bool, default=True Shuffle the samples. random_state : int, RandomState instance or None, default=None Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. return_centers : bool, default=False If True, then return the centers of each cluster. .. versionadded:: 0.23 Returns ------- X : ndarray of shape (n_samples, n_features) The generated samples. y : ndarray of shape (n_samples,) The integer labels for cluster membership of each sample. centers : ndarray of shape (n_centers, n_features) The centers of each cluster. Only returned if ``return_centers=True``. See Also -------- make_classification : A more intricate variant. Examples -------- >>> from sklearn.datasets import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) >>> X, y = make_blobs(n_samples=[3, 3, 4], centers=None, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 1, 2, 0, 2, 2, 2, 1, 1, 0]) """ def __new__(cls, **kwargs): instance = super().__new__(cls) if kwargs is None: return instance else: return instance(**kwargs)
[docs] def _lazy_make_blobs_cpu(self, **kwargs): return make_blobs_MCPU(**kwargs)
[docs] def _lazy_make_blobs_gpu(self, **kwargs): return make_blobs_MGPU(**kwargs)
[docs] def _make_blobs_cpu(self, **kwargs): return make_blobs_CPU(**kwargs)
[docs] def _make_blobs_gpu(self, **kwargs): return make_blobs_GPU(**kwargs)
[docs] def __call__(self, **kwargs): if is_dask_gpu_supported(): if "centers" in kwargs and is_cpu_array(kwargs["centers"]): kwargs["centers"] = cp.asarray(kwargs["centers"]) return self._lazy_make_blobs_gpu(**kwargs) elif is_dask_supported(): return self._lazy_make_blobs_cpu(**kwargs) elif is_gpu_supported(): if "centers" in kwargs and is_cpu_array(kwargs["centers"]): kwargs["centers"] = cp.asarray(kwargs["centers"]) return self._make_blobs_gpu(**kwargs) else: return self._make_blobs_cpu(**kwargs)
[docs] class make_classification: """Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of an ``n_informative``-dimensional hypercube with sides of length ``2*class_sep`` and assigns an equal number of clusters to each class. It introduces interdependence between these features and adds various types of further noise to the data. Without shuffling, ``X`` horizontally stacks features in the following order: the primary ``n_informative`` features, followed by ``n_redundant`` linear combinations of the informative features, followed by ``n_repeated`` duplicates, drawn randomly with replacement from the informative and redundant features. The remaining features are filled with random noise. Thus, without shuffling, all useful features are contained in the columns ``X[:, :n_informative + n_redundant + n_repeated]``. For an example of usage, see :ref:`sphx_glr_auto_examples_datasets_plot_random_dataset.py`. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, default=100 The number of samples. n_features : int, default=20 The total number of features. These comprise ``n_informative`` informative features, ``n_redundant`` redundant features, ``n_repeated`` duplicated features and ``n_features-n_informative-n_redundant-n_repeated`` useless features drawn at random. n_informative : int, default=2 The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension ``n_informative``. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, default=2 The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, default=0 The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, default=2 The number of classes (or labels) of the classification problem. n_clusters_per_class : int, default=2 The number of clusters per class. weights : array-like of shape (n_classes,) or (n_classes - 1,),\ default=None The proportions of samples assigned to each class. If None, then classes are balanced. Note that if ``len(weights) == n_classes - 1``, then the last class weight is automatically inferred. More than ``n_samples`` samples may be returned if the sum of ``weights`` exceeds 1. Note that the actual class proportions will not exactly match ``weights`` when ``flip_y`` isn't 0. flip_y : float, default=0.01 The fraction of samples whose class is assigned randomly. Larger values introduce noise in the labels and make the classification task harder. Note that the default setting flip_y > 0 might lead to less than ``n_classes`` in y in some cases. class_sep : float, default=1.0 The factor multiplying the hypercube size. Larger values spread out the clusters/classes and make the classification task easier. hypercube : bool, default=True If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float, ndarray of shape (n_features,) or None, default=0.0 Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float, ndarray of shape (n_features,) or None, default=1.0 Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : bool, default=True Shuffle the samples and the features. random_state : int, RandomState instance or None, default=None Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Returns ------- X : ndarray of shape (n_samples, n_features) The generated samples. y : ndarray of shape (n_samples,) The integer labels for class membership of each sample. See Also -------- make_blobs : Simplified variant. make_multilabel_classification : Unrelated generator for multilabel tasks. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. Examples -------- >>> from sklearn.datasets import make_classification >>> X, y = make_classification(random_state=42) >>> X.shape (100, 20) >>> y.shape (100,) >>> list(y[:5]) [0, 0, 1, 1, 0] """ def __new__(cls, **kwargs): instance = super().__new__(cls) if kwargs is None: return instance else: return instance(**kwargs)
[docs] def _lazy_make_classification_cpu(self, **kwargs): return make_classification_MCPU(**kwargs)
[docs] def _lazy_make_classification_gpu(self, **kwargs): return make_classification_MGPU(**kwargs)
[docs] def _make_classification_cpu(self, **kwargs): return make_classification_CPU(**kwargs)
[docs] def _make_classification_gpu(self, **kwargs): return make_classification_GPU(**kwargs)
[docs] def __call__(self, **kwargs): if is_dask_gpu_supported(): return self._lazy_make_classification_gpu(**kwargs) elif is_dask_supported(): return self._lazy_make_classification_cpu(**kwargs) elif is_gpu_supported(): return self._make_classification_gpu(**kwargs) else: return self._make_classification_cpu(**kwargs)
[docs] class make_regression: """Generate a random regression problem. The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See :func:`make_low_rank_matrix` for more details. The output is generated by applying a (potentially biased) random linear regression model with `n_informative` nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, default=100 The number of samples. n_features : int, default=100 The number of features. n_informative : int, default=10 The number of informative features, i.e., the number of features used to build the linear model used to generate the output. n_targets : int, default=1 The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar. bias : float, default=0.0 The bias term in the underlying linear model. effective_rank : int, default=None If not None: The approximate number of singular vectors required to explain most of the input data by linear combinations. Using this kind of singular spectrum in the input allows the generator to reproduce the correlations often observed in practice. If None: The input set is well conditioned, centered and gaussian with unit variance. tail_strength : float, default=0.5 The relative importance of the fat noisy tail of the singular values profile if `effective_rank` is not None. When a float, it should be between 0 and 1. noise : float, default=0.0 The standard deviation of the gaussian noise applied to the output. shuffle : bool, default=True Shuffle the samples and the features. coef : bool, default=False If True, the coefficients of the underlying linear model are returned. random_state : int, RandomState instance or None, default=None Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Returns ------- X : ndarray of shape (n_samples, n_features) The input samples. y : ndarray of shape (n_samples,) or (n_samples, n_targets) The output values. coef : ndarray of shape (n_features,) or (n_features, n_targets) The coefficient of the underlying linear model. It is returned only if coef is True. Examples -------- >>> from sklearn.datasets import make_regression >>> X, y = make_regression(n_samples=5, n_features=2, noise=1, random_state=42) >>> X array([[ 0.4967..., -0.1382... ], [ 0.6476..., 1.523...], [-0.2341..., -0.2341...], [-0.4694..., 0.5425...], [ 1.579..., 0.7674...]]) >>> y array([ 6.737..., 37.79..., -10.27..., 0.4017..., 42.22...]) """ def __new__(cls, **kwargs): instance = super().__new__(cls) if kwargs is None: return instance else: return instance(**kwargs)
[docs] def _lazy_make_regression_cpu(self, **kwargs): return make_regression_MCPU(**kwargs)
[docs] def _lazy_make_regression_gpu(self, **kwargs): return make_regression_MGPU(**kwargs)
[docs] def _make_regression_cpu(self, **kwargs): return make_regression_CPU(**kwargs)
[docs] def _make_regression_gpu(self, **kwargs): return make_regression_GPU(**kwargs)
[docs] def __call__(self, **kwargs): if is_dask_gpu_supported(): return self._lazy_make_regression_gpu(**kwargs) elif is_dask_supported(): return self._lazy_make_regression_cpu(**kwargs) elif is_gpu_supported(): return self._make_regression_gpu(**kwargs) else: return self._make_regression_cpu(**kwargs)