Source code for dasf.ml.cluster.spectral

#!/usr/bin/env python3

""" Spectral Clustering algorithm module. """

from dask_ml.cluster import SpectralClustering as SpectralClustering_MCPU
from sklearn.cluster import SpectralClustering as SpectralClustering_CPU

from dasf.ml.cluster.classifier import ClusterClassifier


[docs] class SpectralClustering(ClusterClassifier): """ Apply clustering to a projection of the normalized Laplacian. In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex, or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster, such as when clusters are nested circles on the 2D plane. If the affinity matrix is the adjacency matrix of a graph, this method can be used to find normalized graph cuts. When calling ``fit``, an affinity matrix is constructed using either a kernel function such the Gaussian (aka RBF) kernel with Euclidean distance ``d(X, X)``:: np.exp(-gamma * d(X,X) ** 2) or a k-nearest neighbors connectivity matrix. Alternatively, a user-provided affinity matrix can be specified by setting ``affinity='precomputed'``. Read more in the :ref:`User Guide <spectral_clustering>`. Parameters ---------- n_clusters : int, default=8 The dimension of the projection subspace. eigen_solver : {'arpack', 'lobpcg', 'amg'}, default=None The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities. If None, then ``'arpack'`` is used. n_components : int, default=n_clusters Number of eigenvectors to use for the spectral embedding random_state : int, RandomState instance, default=None A pseudo random number generator used for the initialization of the lobpcg eigenvectors decomposition when ``eigen_solver='amg'`` and by the K-Means initialization. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. n_init : int, default=10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. Only used if ``assign_labels='kmeans'``. gamma : float, default=1.0 Kernel coefficient for rbf, poly, sigmoid, laplacian and chi2 kernels. Ignored for ``affinity='nearest_neighbors'``. affinity : str or callable, default='rbf' How to construct the affinity matrix. - 'nearest_neighbors': construct the affinity matrix by computing a graph of nearest neighbors. - 'rbf': construct the affinity matrix using a radial basis function (RBF) kernel. - 'precomputed': interpret ``X`` as a precomputed affinity matrix, where larger values indicate greater similarity between instances. - 'precomputed_nearest_neighbors': interpret ``X`` as a sparse graph of precomputed distances, and construct a binary affinity matrix from the ``n_neighbors`` nearest neighbors of each instance. - one of the kernels supported by :func:`~sklearn.metrics.pairwise_kernels`. Only kernels that produce similarity scores (non-negative values that increase with similarity) should be used. This property is not checked by the clustering algorithm. n_neighbors : int, default=10 Number of neighbors to use when constructing the affinity matrix using the nearest neighbors method. Ignored for ``affinity='rbf'``. eigen_tol : float, default=0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when ``eigen_solver='arpack'``. assign_labels : {'kmeans', 'discretize'}, default='kmeans' The strategy for assigning labels in the embedding space. There are two ways to assign labels after the Laplacian embedding. k-means is a popular choice, but it can be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : dict of str to any, default=None Parameters (keyword arguments) and values for kernel passed as callable object. Ignored by other kernels. n_jobs : int, default=None The number of parallel jobs to run when `affinity='nearest_neighbors'` or `affinity='precomputed_nearest_neighbors'`. The neighbors search will be done in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. verbose : bool, default=False Verbosity mode. .. versionadded:: 0.24 persist_embedding : bool Whether to persist the intermediate n_samples x n_components array used for clustering. kmeans_params : dictionary of string to any, optional Keyword arguments for the KMeans clustering used for the final clustering. Examples -------- >>> from dasf.ml.cluster import SpectralClustering >>> import numpy as np >>> X = np.array([[1, 1], [2, 1], [1, 0], ... [4, 7], [3, 5], [3, 6]]) >>> clustering = SpectralClustering(n_clusters=2, ... assign_labels='discretize', ... random_state=0).fit(X) >>> clustering SpectralClustering(assign_labels='discretize', n_clusters=2, random_state=0) For further informations see: - https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html#sklearn.cluster.SpectralClustering - https://ml.dask.org/modules/generated/dask_ml.cluster.SpectralClustering.html Notes ----- A distance matrix for which 0 indicates identical elements and high values indicate very dissimilar elements can be transformed into an affinity / similarity matrix that is well-suited for the algorithm by applying the Gaussian (aka RBF, heat) kernel:: np.exp(- dist_matrix ** 2 / (2. * delta ** 2)) where ``delta`` is a free parameter representing the width of the Gaussian kernel. An alternative is to take a symmetric version of the k-nearest neighbors connectivity matrix of the points. If the pyamg package is installed, it is used: this greatly speeds up computation. References ---------- - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf """ def __init__( self, n_clusters=8, eigen_solver=None, random_state=None, n_init=10, gamma=1.0, affinity="rbf", n_neighbors=10, eigen_tol=0.0, assign_labels="kmeans", degree=3, coef0=1, kernel_params=None, n_jobs=None, n_components=None, persist_embedding=False, kmeans_params=None, verbose=False, **kwargs ): """ Constructor of the class SpectralClustering. """ super().__init__(**kwargs) self.n_clusters = n_clusters self.eigen_solver = eigen_solver self.random_state = random_state self.n_init = n_init self.gamma = gamma self.affinity = affinity self.n_neighbors = n_neighbors self.eigen_tol = eigen_tol self.assign_labels = assign_labels self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params self.n_jobs = n_jobs self.n_components = n_components self.persist_embedding = persist_embedding self.kmeans_params = kmeans_params self.verbose = verbose self.__sc_cpu = SpectralClustering_CPU( n_clusters=n_clusters, eigen_solver=eigen_solver, random_state=random_state, n_init=n_init, gamma=gamma, affinity=affinity, n_neighbors=n_neighbors, eigen_tol=eigen_tol, assign_labels=assign_labels, degree=degree, coef0=coef0, kernel_params=kernel_params, n_jobs=n_jobs, n_components=n_components, verbose=verbose ) # If n_components is set to None, use default n_components = 100 if n_components is None else n_components self.__sc_mcpu = SpectralClustering_MCPU( n_clusters=n_clusters, eigen_solver=eigen_solver, random_state=random_state, n_init=n_init, gamma=gamma, affinity=affinity, n_neighbors=n_neighbors, eigen_tol=eigen_tol, assign_labels=assign_labels, degree=degree, coef0=coef0, kernel_params=kernel_params, n_jobs=n_jobs, n_components=n_components, persist_embedding=persist_embedding, kmeans_params=kmeans_params, )
[docs] def _fit_cpu(self, X, y=None, sample_weight=None): """ Perform spectral clustering from features, or affinity matrix using CPU only. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) or \ (n_samples, n_samples) Training instances to cluster, similarities / affinities between instances if ``affinity='precomputed'``, or distances between instances if ``affinity='precomputed_nearest_neighbors``. If a sparse matrix is provided in a format other than ``csr_matrix``, ``csc_matrix``, or ``coo_matrix``, it will be converted into a sparse ``csr_matrix``. y : Ignored Not used, present here for API consistency by convention. Returns ------- self : object A fitted instance of the estimator. """ return self.__sc_cpu.fit(X=X, y=y)
[docs] def _lazy_fit_predict_cpu(self, X, y=None, sample_weight=None): """ Perform spectral clustering on `X` and return cluster labels using Dask with CPU only. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) or \ (n_samples, n_samples) Training instances to cluster, similarities / affinities between instances if ``affinity='precomputed'``, or distances between instances if ``affinity='precomputed_nearest_neighbors``. If a sparse matrix is provided in a format other than ``csr_matrix``, ``csc_matrix``, or ``coo_matrix``, it will be converted into a sparse ``csr_matrix``. y : Ignored Not used, present here for API consistency by convention. Returns ------- labels : ndarray of shape (n_samples,) Cluster labels. """ return self.__sc_mcpu.fit_predict(X=X)
[docs] def _fit_predict_cpu(self, X, y=None, sample_weight=None): """ Perform spectral clustering on `X` and return cluster labels using CPU only. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) or \ (n_samples, n_samples) Training instances to cluster, similarities / affinities between instances if ``affinity='precomputed'``, or distances between instances if ``affinity='precomputed_nearest_neighbors``. If a sparse matrix is provided in a format other than ``csr_matrix``, ``csc_matrix``, or ``coo_matrix``, it will be converted into a sparse ``csr_matrix``. y : Ignored Not used, present here for API consistency by convention. Returns ------- labels : ndarray of shape (n_samples,) Cluster labels. """ return self.__sc_cpu.fit_predict(X)