Source code for dasf.pipeline.executors.wrapper

#!/usr/bin/env python3

try:
    import cupy as cp
    import rmm
except ImportError:  # pragma: no cover
    pass

from dasf.pipeline.types import TaskExecutorType
from dasf.utils.funcs import get_backend_supported, get_gpu_count, is_gpu_supported


[docs] class LocalExecutor: def __init__(self, use_gpu=None, backend="numpy", gpu_allocator="cupy"): self.backend = backend if use_gpu is None: if self.ngpus > 0: self.dtype = TaskExecutorType.single_gpu else: self.dtype = TaskExecutorType.single_cpu elif use_gpu and is_gpu_supported(): self.dtype = TaskExecutorType.single_gpu else: self.dtype = TaskExecutorType.single_cpu if gpu_allocator == "rmm" and self.dtype == TaskExecutorType.single_gpu: rmm.reinitialize(managed_memory=True) cp.cuda.set_allocator(rmm.rmm_cupy_allocator) @property def ngpus(self) -> int: return get_gpu_count() @property def is_connected(self) -> bool: return True
[docs] def pre_run(self, pipeline): pass
[docs] def post_run(self, pipeline): pass
[docs] def get_backend(self): if self.backend == "numpy" and \ self.dtype == TaskExecutorType.single_gpu: return eval("cupy") return eval("cupy")
[docs] def execute(self, fn, *args, **kwargs): if get_backend_supported(fn): kwargs['backend'] = self.get_backend() return fn(*args, **kwargs)