dasf.ml.dl.models ================= .. py:module:: dasf.ml.dl.models Submodules ---------- .. toctree:: :maxdepth: 1 /autoapi/dasf/ml/dl/models/devconvnet/index Classes ------- .. autoapisummary:: dasf.ml.dl.models.TorchPatchDeConvNet dasf.ml.dl.models.TorchPatchDeConvNetSkip dasf.ml.dl.models.TorchSectionDeConvNet dasf.ml.dl.models.TorchSectionDeConvNetSkip Package Contents ---------------- .. py:class:: TorchPatchDeConvNet(n_classes=4, learned_billinear=False, clip=0.1, class_weights=None) Bases: :py:obj:`NNModule` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes internal Module state, shared by both nn.Module and ScriptModule. .. py:attribute:: unpool .. py:attribute:: conv_block1 .. py:attribute:: conv_block2 .. py:attribute:: conv_block3 .. py:attribute:: conv_block4 .. py:attribute:: conv_block5 .. py:attribute:: conv_block6 .. py:attribute:: conv_block7 .. py:attribute:: deconv_block8 .. py:attribute:: unpool_block9 .. py:attribute:: deconv_block10 .. py:attribute:: unpool_block11 .. py:attribute:: deconv_block12 .. py:attribute:: unpool_block13 .. py:attribute:: deconv_block14 .. py:attribute:: unpool_block15 .. py:attribute:: deconv_block16 .. py:attribute:: unpool_block17 .. py:attribute:: deconv_block18 .. py:attribute:: seg_score19 .. py:method:: forward(x) Same as :meth:`torch.nn.Module.forward()`. Args: *args: Whatever you decide to pass into the forward method. **kwargs: Keyword arguments are also possible. Return: Your model's output .. py:method:: init_vgg16_params(vgg16, copy_fc8=True) .. py:method:: load() This is just a no-op load method. .. py:class:: TorchPatchDeConvNetSkip(n_classes=4, learned_billinear=False, clip=0.1, class_weights=None) Bases: :py:obj:`NNModule` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes internal Module state, shared by both nn.Module and ScriptModule. .. py:attribute:: unpool .. py:attribute:: conv_block1 .. py:attribute:: conv_block2 .. py:attribute:: conv_block3 .. py:attribute:: conv_block4 .. py:attribute:: conv_block5 .. py:attribute:: conv_block6 .. py:attribute:: conv_block7 .. py:attribute:: deconv_block8 .. py:attribute:: unpool_block9 .. py:attribute:: deconv_block10 .. py:attribute:: unpool_block11 .. py:attribute:: deconv_block12 .. py:attribute:: unpool_block13 .. py:attribute:: deconv_block14 .. py:attribute:: unpool_block15 .. py:attribute:: deconv_block16 .. py:attribute:: unpool_block17 .. py:attribute:: deconv_block18 .. py:attribute:: seg_score19 .. py:method:: forward(x) Same as :meth:`torch.nn.Module.forward()`. Args: *args: Whatever you decide to pass into the forward method. **kwargs: Keyword arguments are also possible. Return: Your model's output .. py:method:: init_vgg16_params(vgg16, copy_fc8=True) .. py:method:: load() This is just a no-op load method. .. py:class:: TorchSectionDeConvNet(n_classes=4, learned_billinear=False, clip=0.1, class_weights=False) Bases: :py:obj:`NNModule` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes internal Module state, shared by both nn.Module and ScriptModule. .. py:attribute:: unpool .. py:attribute:: conv_block1 .. py:attribute:: conv_block2 .. py:attribute:: conv_block3 .. py:attribute:: conv_block4 .. py:attribute:: conv_block5 .. py:attribute:: conv_block6 .. py:attribute:: conv_block7 .. py:attribute:: deconv_block8 .. py:attribute:: unpool_block9 .. py:attribute:: deconv_block10 .. py:attribute:: unpool_block11 .. py:attribute:: deconv_block12 .. py:attribute:: unpool_block13 .. py:attribute:: deconv_block14 .. py:attribute:: unpool_block15 .. py:attribute:: deconv_block16 .. py:attribute:: unpool_block17 .. py:attribute:: deconv_block18 .. py:attribute:: seg_score19 .. py:method:: forward(x) Same as :meth:`torch.nn.Module.forward()`. Args: *args: Whatever you decide to pass into the forward method. **kwargs: Keyword arguments are also possible. Return: Your model's output .. py:method:: init_vgg16_params(vgg16, copy_fc8=True) .. py:method:: load() This is just a no-op load method. .. py:class:: TorchSectionDeConvNetSkip(n_classes=4, learned_billinear=False, clip=0.1, class_weights=None) Bases: :py:obj:`NNModule` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes internal Module state, shared by both nn.Module and ScriptModule. .. py:attribute:: unpool .. py:attribute:: conv_block1 .. py:attribute:: conv_block2 .. py:attribute:: conv_block3 .. py:attribute:: conv_block4 .. py:attribute:: conv_block5 .. py:attribute:: conv_block6 .. py:attribute:: conv_block7 .. py:attribute:: deconv_block8 .. py:attribute:: unpool_block9 .. py:attribute:: deconv_block10 .. py:attribute:: unpool_block11 .. py:attribute:: deconv_block12 .. py:attribute:: unpool_block13 .. py:attribute:: deconv_block14 .. py:attribute:: unpool_block15 .. py:attribute:: deconv_block16 .. py:attribute:: unpool_block17 .. py:attribute:: deconv_block18 .. py:attribute:: seg_score19 .. py:method:: forward(x) Same as :meth:`torch.nn.Module.forward()`. Args: *args: Whatever you decide to pass into the forward method. **kwargs: Keyword arguments are also possible. Return: Your model's output .. py:method:: init_vgg16_params(vgg16, copy_fc8=True) .. py:method:: load() This is just a no-op load method.