dasf.pipeline.executors ======================= .. py:module:: dasf.pipeline.executors Submodules ---------- .. toctree:: :maxdepth: 1 /autoapi/dasf/pipeline/executors/base/index /autoapi/dasf/pipeline/executors/dask/index /autoapi/dasf/pipeline/executors/ray/index /autoapi/dasf/pipeline/executors/wrapper/index Classes ------- .. autoapisummary:: dasf.pipeline.executors.Executor dasf.pipeline.executors.DaskPBSPipelineExecutor dasf.pipeline.executors.DaskPipelineExecutor dasf.pipeline.executors.DaskTasksPipelineExecutor dasf.pipeline.executors.LocalExecutor Package Contents ---------------- .. py:class:: Executor .. py:property:: is_connected :type: bool .. py:property:: info :type: str .. py:method:: has_dataset(key) .. py:method:: register_dataset(**kwargs) .. py:method:: get_dataset(key) :abstractmethod: .. py:method:: register_plugin(plugin) .. py:method:: pre_run(pipeline) .. py:method:: post_run(pipeline) .. py:method:: execute(fn, *args, **kwargs) .. py:method:: shutdown() .. py:class:: DaskPBSPipelineExecutor(**kwargs) Bases: :py:obj:`dasf.pipeline.executors.base.Executor` .. py:attribute:: client .. py:class:: DaskPipelineExecutor(address=None, port=8786, local=False, use_gpu=False, profiler=None, protocol=None, gpu_allocator='cupy', cluster_kwargs=None, client_kwargs=None) Bases: :py:obj:`dasf.pipeline.executors.base.Executor` A pipeline engine based on dask data flow. Keyword arguments: address -- address of the Dask scheduler (default None). port -- port of the Dask scheduler (default 8786). local -- kicks off a new local Dask cluster (default False). use_gpu -- in conjunction with `local`, it kicks off a local CUDA Dask cluster (default False). profiler -- sets a Dask profiler. protocol -- sets the Dask protocol (default TCP) gpu_allocator -- sets which is the memory allocator for GPU (default cupy). cluster_kwargs -- extra Dask parameters like memory, processes, etc. client_kwargs -- extra Client parameters. .. py:attribute:: address .. py:attribute:: port .. py:attribute:: local .. py:property:: ngpus :type: int .. py:property:: is_connected :type: bool .. py:property:: info :type: str .. py:method:: execute(fn, *args, **kwargs) .. py:method:: register_plugin(plugin) .. py:method:: register_dataset(**kwargs) .. py:method:: has_dataset(key) .. py:method:: get_dataset(key) .. py:method:: shutdown(gracefully=True) .. py:method:: close() .. py:class:: DaskTasksPipelineExecutor(address=None, port=8786, local=False, use_gpu=True, profiler=None, protocol=None, gpu_allocator='cupy', cluster_kwargs=None, client_kwargs=None) Bases: :py:obj:`DaskPipelineExecutor` A not centric execution engine based on dask. Keyword arguments: address -- address of the Dask scheduler (default None). port -- port of the Dask scheduler (default 8786). local -- kicks off a new local Dask cluster (default False). use_gpu -- in conjunction with `local`, it kicks off a local CUDA Dask cluster (default False). profiler -- sets a Dask profiler. gpu_allocator -- sets which is the memory allocator for GPU (default cupy). cluster_kwargs -- extra Dask parameters like memory, processes, etc. client_kwargs -- extra Client parameters. .. py:attribute:: _tasks_map .. py:method:: pre_run(pipeline) .. py:method:: post_run(pipeline) .. py:method:: execute(fn, *args, **kwargs) .. py:method:: register_dataset(**kwargs) .. py:method:: has_dataset(key) .. py:method:: get_dataset(key) .. py:method:: shutdown(gracefully=True) .. py:method:: close() .. py:class:: LocalExecutor(use_gpu=None, backend='numpy', gpu_allocator='cupy') .. py:attribute:: backend .. py:property:: ngpus :type: int .. py:property:: is_connected :type: bool .. py:method:: pre_run(pipeline) .. py:method:: post_run(pipeline) .. py:method:: get_backend() .. py:method:: execute(fn, *args, **kwargs)