dasf.transforms =============== .. py:module:: dasf.transforms .. autoapi-nested-parse:: Init module for all transformation structures. Submodules ---------- .. toctree:: :maxdepth: 1 /autoapi/dasf/transforms/base/index /autoapi/dasf/transforms/memory/index /autoapi/dasf/transforms/operations/index /autoapi/dasf/transforms/transforms/index Classes ------- .. autoapisummary:: dasf.transforms.MappedTransform dasf.transforms.ReductionTransform dasf.transforms.TargeteredTransform dasf.transforms.Fit dasf.transforms.FitPredict dasf.transforms.FitTransform dasf.transforms.GetParams dasf.transforms.Predict dasf.transforms.ComputeDaskData dasf.transforms.PersistDaskData dasf.transforms.Reshape dasf.transforms.SliceArray dasf.transforms.SliceArrayByPercent dasf.transforms.ArraysToDataFrame dasf.transforms.ArrayToHDF5 dasf.transforms.ArrayToZarr dasf.transforms.ExtractData dasf.transforms.Normalize dasf.transforms.ZarrToArray Package Contents ---------------- .. py:class:: MappedTransform(function, depth=None, boundary=None, trim=True, output_chunk=None, drop_axis=None, new_axis=None) Bases: :py:obj:`Transform` Class representing a MappedTransform based on Transform object. This object refers to any operation that can be done in blocks. In special, for Dask chunks. There are several ways of doing that. This class tries to simplify how the functions are applied into a block. Parameters ---------- function : Callable A function that will be applied in a block. depth : tuple The value of the boundary elements per axis (the default is None). boundary : str The type of the boundary. See Dask boundaries for more examples (the default is None). trim : bool Option to trim the data after an overlap (the default is True). output_chunk : tuple New shape of the output after computing the function (the default is None). drop_axis : tuple Which axis should be deleted after computing the function (the default is None). new_axis : tuple Which axis represent a new axis after computing the function (the default is None). .. py:attribute:: function .. py:attribute:: depth .. py:attribute:: boundary .. py:attribute:: trim .. py:attribute:: output_chunk .. py:attribute:: drop_axis .. py:attribute:: new_axis .. py:method:: __lazy_transform_generic(X, xp, **kwargs) .. py:method:: _lazy_transform_cpu(X, **kwargs) Respective lazy transform mocked function for CPUs. .. py:method:: _lazy_transform_gpu(X, **kwargs) Respective lazy transform mocked function for GPUs. .. py:method:: _transform_cpu(X, **kwargs) Respective immediate transform mocked function for local CPU(s). .. py:method:: _transform_gpu(X, **kwargs) Respective immediate transform mocked function for local GPU(s). .. py:method:: transform(X, **kwargs) Generic transform funtion according executor. .. py:class:: ReductionTransform(output_size, func_aggregate, func_chunk, func_combine=None) Bases: :py:obj:`Transform` Class representing a Reduction based on Transform object. This is a simple MapReduction operation using Dask. Parameters ---------- output_size : tuple The size of the new output. func_aggregate : Callable The function called to aggregate the result of each chunk. func_chunk : Callable The function applied in each chunk. func_combine : Callable The function to combine each reduction of aggregate (the default is None). .. py:attribute:: output_size .. py:attribute:: func_aggregate .. py:attribute:: func_chunk .. py:attribute:: func_combine .. py:method:: _operation_aggregate_cpu(block, axis=None, keepdims=False) .. py:method:: _operation_aggregate_gpu(block, axis=None, keepdims=False) .. py:method:: _operation_combine_cpu(block, axis=None, keepdims=False) .. py:method:: _operation_combine_gpu(block, axis=None, keepdims=False) .. py:method:: _operation_chunk_cpu(block, axis=None, keepdims=False) .. py:method:: _operation_chunk_gpu(block, axis=None, keepdims=False) .. py:method:: _lazy_transform_cpu(X, *args, **kwargs) Respective lazy transform mocked function for CPUs. .. py:method:: _lazy_transform_gpu(X, *args, **kwargs) Respective lazy transform mocked function for GPUs. .. py:method:: _transform_cpu(X, *args, **kwargs) Respective immediate transform mocked function for local CPU(s). .. py:method:: _transform_gpu(X, *args, **kwargs) Respective immediate transform mocked function for local GPU(s). .. py:method:: transform(X, *args, **kwargs) Generic transform funtion according executor. .. py:class:: TargeteredTransform(run_local=None, run_gpu=None) Bases: :py:obj:`Transform` Class representing a Targetered Transform operation of the pipeline. This specific transform operates according the parameters of the constructor. Parameters ---------- run_local : bool Define that the operator will run locally and not distributed. run_gpu : bool Define if the operator will use GPU(s) or not. Constructor of the class TargeteredTransform. .. py:attribute:: _run_local .. py:attribute:: _run_gpu .. py:class:: Fit Bases: :py:obj:`Operator` Class representing a Fit operation of the pipeline. .. py:method:: _lazy_fit_cpu(X, y=None, **kwargs) :abstractmethod: Respective lazy fit mocked function for CPUs. .. py:method:: _lazy_fit_gpu(X, y=None, **kwargs) :abstractmethod: Respective lazy fit mocked function for GPUs. .. py:method:: _fit_cpu(X, y=None, **kwargs) :abstractmethod: Respective immediate fit mocked function for local CPU(s). .. py:method:: _fit_gpu(X, y=None, **kwargs) :abstractmethod: Respective immediate fit mocked function for local GPU(s). .. py:method:: fit(X, y, sample_weight=None, **kwargs) Generic fit funtion according executor. .. py:method:: fit_from_model(model, X, y, sample_weight=None, **kwargs) :staticmethod: Return the model of a previous created object. .. py:class:: FitPredict Bases: :py:obj:`Operator` Class representing a Fit with Predict operation of the pipeline. .. py:method:: _lazy_fit_predict_cpu(X, y=None, **kwargs) :abstractmethod: Respective lazy fit with predict mocked function for CPUs. .. py:method:: _lazy_fit_predict_gpu(X, y=None, **kwargs) :abstractmethod: Respective lazy fit with predict mocked function for GPUs. .. py:method:: _fit_predict_cpu(X, y=None, **kwargs) :abstractmethod: Respective immediate fit with predict mocked function for local CPU(s). .. py:method:: _fit_predict_gpu(X, y=None, **kwargs) :abstractmethod: Respective immediate fit with predict mocked function for local GPU(s). .. py:method:: fit_predict(X, y=None, **kwargs) Generic fit with predict funtion according executor. .. py:method:: fit_predict_from_model(model, X, y, sample_weight=None, **kwargs) :staticmethod: Return the model of a previous created object. .. py:class:: FitTransform Bases: :py:obj:`Operator` Class representing a Fit with Transform operation of the pipeline. .. py:method:: _lazy_fit_transform_cpu(X, y=None, **kwargs) :abstractmethod: Respective lazy fit with transform mocked function for CPUs. .. py:method:: _lazy_fit_transform_gpu(X, y=None, **kwargs) :abstractmethod: Respective lazy fit with transform mocked function for GPUs. .. py:method:: _fit_transform_cpu(X, y=None, **kwargs) :abstractmethod: Respective immediate fit with transform mocked function for local CPU(s). .. py:method:: _fit_transform_gpu(X, y=None, **kwargs) :abstractmethod: Respective immediate fit with transform mocked function for local GPU(s). .. py:method:: fit_transform(X, y=None, **kwargs) Generic fit with transform funtion according executor. .. py:method:: fit_transform_from_model(model, X, y, sample_weight=None, **kwargs) :staticmethod: Return the model of a previous created object. .. py:class:: GetParams Bases: :py:obj:`Operator` Class representing a Get Parameters operation of the pipeline. .. py:method:: _lazy_get_params_cpu(deep=True, **kwargs) :abstractmethod: Respective lazy get_params mocked function for CPUs. .. py:method:: _lazy_get_params_gpu(deep=True, **kwargs) :abstractmethod: Respective lazy get_params mocked function for GPUs. .. py:method:: _get_params_cpu(deep=True, **kwargs) :abstractmethod: Respective immediate get_params mocked function for local CPU(s). .. py:method:: _get_params_gpu(deep=True, **kwargs) :abstractmethod: Respective immediate get_params mocked function for local GPU(s). .. py:method:: get_params(deep=True, **kwargs) Generic get_params funtion according executor. .. py:class:: Predict Bases: :py:obj:`Operator` Class representing a Predict operation of the pipeline. .. py:method:: _lazy_predict_cpu(X, sample_weight=None, **kwargs) :abstractmethod: Respective lazy predict mocked function for CPUs. .. py:method:: _lazy_predict_gpu(X, sample_weight=None, **kwargs) :abstractmethod: Respective lazy predict mocked function for GPUs. .. py:method:: _predict_cpu(X, sample_weight=None, **kwargs) :abstractmethod: Respective immediate predict mocked function for local CPU(s). .. py:method:: _predict_gpu(X, sample_weight=None, **kwargs) :abstractmethod: Respective immediate predict mocked function for local GPU(s). .. py:method:: predict(X, sample_weight=None, **kwargs) Generic predict funtion according executor. .. py:method:: predict_from_model(model, X, sample_weight=None, **kwargs) :staticmethod: Return the model of a previous created object. .. py:class:: ComputeDaskData Bases: :py:obj:`dasf.transforms.base.Transform` Allow persisting a dask array to memory. It will gather the data blocks from all workers and resembles locally. .. py:method:: __lazy_transform_generic(X) .. py:method:: _lazy_transform_cpu(X) Respective lazy transform mocked function for CPUs. .. py:method:: _lazy_transform_gpu(X) Respective lazy transform mocked function for GPUs. .. py:method:: _transform_cpu(X) Respective immediate transform mocked function for local CPU(s). .. py:method:: _transform_gpu(X) Respective immediate transform mocked function for local GPU(s). .. py:class:: PersistDaskData Bases: :py:obj:`dasf.transforms.base.Transform` Allow persisting a dask array to memory and return a copy of the object. It will gather the data blocks from all workers and resembles locally. .. py:method:: __lazy_transform_generic(X) .. py:method:: _lazy_transform_cpu(X) Respective lazy transform mocked function for CPUs. .. py:method:: _lazy_transform_gpu(X) Respective lazy transform mocked function for GPUs. .. py:method:: _transform_cpu(X) Respective immediate transform mocked function for local CPU(s). .. py:method:: _transform_gpu(X) Respective immediate transform mocked function for local GPU(s). .. py:class:: Reshape(shape = None) Bases: :py:obj:`dasf.transforms.base.Fit` Get a slice of a cube. An inline slice is a section over the x-axis. Parameters ---------- iline_index : int The index of the inline to get. .. py:attribute:: shape .. py:method:: fit(X, y=None) Generic fit funtion according executor. .. py:class:: SliceArray(output_size) Bases: :py:obj:`dasf.transforms.base.Transform` Class representing a Transform operation of the pipeline. .. py:attribute:: x .. py:method:: transform(X) Generic transform funtion according executor. .. py:class:: SliceArrayByPercent(x=100.0, y=100.0, z=100.0) Bases: :py:obj:`dasf.transforms.base.Transform` Class representing a Transform operation of the pipeline. .. py:attribute:: x .. py:attribute:: y .. py:attribute:: z .. py:method:: transform(X) Generic transform funtion according executor. .. py:class:: ArraysToDataFrame Bases: :py:obj:`dasf.transforms.base.Transform` Class representing a Transform operation of the pipeline. .. py:method:: _build_dataframe(data, columns, xp, df) .. py:method:: _lazy_transform(xp, df, **kwargs) .. py:method:: _lazy_transform_cpu(X=None, **kwargs) Respective lazy transform mocked function for CPUs. .. py:method:: _lazy_transform_gpu(X=None, **kwargs) Respective lazy transform mocked function for GPUs. .. py:method:: _transform(xp, df, **kwargs) .. py:method:: _transform_cpu(X=None, **kwargs) Respective immediate transform mocked function for local CPU(s). .. py:method:: _transform_gpu(X=None, **kwargs) Respective immediate transform mocked function for local GPU(s). .. py:class:: ArrayToHDF5(dataset_path, chunks=None, save=True, filename=None) Bases: :py:obj:`dasf.transforms.base.Transform` Class representing a Transform operation of the pipeline. .. py:attribute:: dataset_path .. py:attribute:: chunks .. py:attribute:: save :value: True .. py:attribute:: filename .. py:method:: _convert_filename(url) :staticmethod: .. py:method:: _lazy_transform_generic_all(data) .. py:method:: _transform_generic_all(data) .. py:method:: _lazy_transform_generic(X, **kwargs) .. py:method:: _transform_generic(X, **kwargs) .. py:method:: _lazy_transform_gpu(X, **kwargs) Respective lazy transform mocked function for GPUs. .. py:method:: _lazy_transform_cpu(X, **kwargs) Respective lazy transform mocked function for CPUs. .. py:method:: _transform_gpu(X, **kwargs) Respective immediate transform mocked function for local GPU(s). .. py:method:: _transform_cpu(X, **kwargs) Respective immediate transform mocked function for local CPU(s). .. py:class:: ArrayToZarr(chunks=None, save=True, filename=None) Bases: :py:obj:`dasf.transforms.base.Transform` Class representing a Transform operation of the pipeline. .. py:attribute:: chunks .. py:attribute:: save :value: True .. py:attribute:: filename .. py:method:: _convert_filename(url) :staticmethod: .. py:method:: _lazy_transform_generic_all(data) .. py:method:: _transform_generic_all(data, chunks, **kwargs) .. py:method:: _lazy_transform_generic(X, **kwargs) .. py:method:: _transform_generic(X, **kwargs) .. py:method:: _lazy_transform_gpu(X, **kwargs) Respective lazy transform mocked function for GPUs. .. py:method:: _lazy_transform_cpu(X, **kwargs) Respective lazy transform mocked function for CPUs. .. py:method:: _transform_gpu(X, **kwargs) Respective immediate transform mocked function for local GPU(s). .. py:method:: _transform_cpu(X, **kwargs) Respective immediate transform mocked function for local CPU(s). .. py:class:: ExtractData Bases: :py:obj:`dasf.transforms.base.Transform` Extract data from Dataset object .. py:method:: transform(X) Extract data from datasets that contains internal data. Parameters ---------- X : Dataset-like A dataset object that could be anything that contains an internal structure representing the raw data. Returns ------- data : Any Any representation of the internal Dataset data. .. py:class:: Normalize Bases: :py:obj:`dasf.transforms.base.Transform` Normalize data object .. py:method:: transform(X) Normalize the input data based on mean() and std(). Parameters ---------- X : Any Any data that could be normalized based on mean and standard deviation. Returns ------- data : Any Normalized data .. py:class:: ZarrToArray(chunks=None, save=True, filename=None) Bases: :py:obj:`dasf.transforms.base.Transform` Class representing a Transform operation of the pipeline. .. py:attribute:: chunks .. py:attribute:: save .. py:attribute:: filename .. py:method:: _convert_filename(url) :staticmethod: .. py:method:: transform(X) Generic transform funtion according executor.