Source code for minerva.losses.dice

from typing import List, Optional

import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss

from minerva.losses._functional import dice_score
from minerva.utils.tensor import to_tensor

BINARY_MODE = "binary"
MULTICLASS_MODE = "multiclass"
MULTILABEL_MODE = "multilabel"


# Borrowed from https://github.com/qubvel/segmentation_models.pytorch/blob/master/segmentation_models_pytorch/losses/dice.py
[docs] class DiceLoss(_Loss): def __init__( self, mode: str, classes: Optional[List[int]] = None, log_loss: bool = False, from_logits: bool = True, smooth: float = 0.0, ignore_index: Optional[int] = None, eps: float = 1e-7, ): """ Initialize the DiceLoss class. Parameters ---------- mode : str Loss mode. Valid options are 'binary', 'multiclass', or 'multilabel'. classes : Optional[List[int]], optional List of classes that contribute in loss computation. By default, all channels are included. By default None log_loss : bool, optional If True, loss is computed as `- log(dice_coeff)`. If False, loss is computed as `1 - dice_coeff`, by default False from_logits : bool, optional If True, assumes input is raw logits. If False, assumes input is probabilities., by default True smooth : float, optional Smoothness constant for dice coefficient (a), by default 0.0 ignore_index : Optional[int], optional Label that indicates ignored pixels (does not contribute to loss), by default None eps : float, optional A small epsilon for numerical stability to avoid zero division error (denominator will be always greater or equal to eps), by default 1e-7 Raises ------ AssertionError If the mode is not one of 'binary', 'multiclass', or 'multilabel' and classes are being masked with mode='binary'. """ assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE} super(DiceLoss, self).__init__() self.mode = mode if classes is not None: assert ( mode != BINARY_MODE ), "Masking classes is not supported with mode=binary" classes = to_tensor(classes, dtype=torch.long) self.classes = classes self.from_logits = from_logits self.smooth = smooth self.eps = eps self.log_loss = log_loss self.ignore_index = ignore_index
[docs] def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: assert y_true.size(0) == y_pred.size(0) if self.from_logits: # Apply activations to get [0..1] class probabilities # Using Log-Exp as this gives more numerically stable result and does not cause vanishing gradient on # extreme values 0 and 1 if self.mode == MULTICLASS_MODE: y_pred = y_pred.log_softmax(dim=1).exp() else: y_pred = F.logsigmoid(y_pred).exp() bs = y_true.size(0) num_classes = y_pred.size(1) dims = (0, 2) if self.mode == BINARY_MODE: y_true = y_true.view(bs, 1, -1) y_pred = y_pred.view(bs, 1, -1) if self.ignore_index is not None: mask = y_true != self.ignore_index y_pred = y_pred * mask y_true = y_true * mask if self.mode == MULTICLASS_MODE: y_true = y_true.view(bs, -1) y_pred = y_pred.view(bs, num_classes, -1) if self.ignore_index is not None: mask = y_true != self.ignore_index y_pred = y_pred * mask.unsqueeze(1) y_true = F.one_hot( (y_true * mask).to(torch.long), num_classes ) # N,H*W -> N,H*W, C y_true = y_true.permute(0, 2, 1) * mask.unsqueeze(1) # N, C, H*W else: y_true = F.one_hot(y_true, num_classes) # N,H*W -> N,H*W, C y_true = y_true.permute(0, 2, 1) # N, C, H*W if self.mode == MULTILABEL_MODE: y_true = y_true.view(bs, num_classes, -1) y_pred = y_pred.view(bs, num_classes, -1) if self.ignore_index is not None: mask = y_true != self.ignore_index y_pred = y_pred * mask y_true = y_true * mask scores = self.compute_score( y_pred, y_true.type_as(y_pred), smooth=self.smooth, eps=self.eps, dims=dims, ) if self.log_loss: loss = -torch.log(scores.clamp_min(self.eps)) else: loss = 1.0 - scores # Dice loss is undefined for non-empty classes # So we zero contribution of channel that does not have true pixels # NOTE: A better workaround would be to use loss term `mean(y_pred)` # for this case, however it will be a modified jaccard loss mask = y_true.sum(dims) > 0 loss *= mask.to(loss.dtype) if self.classes is not None: loss = loss[self.classes] return self.aggregate_loss(loss)
[docs] def aggregate_loss(self, loss): return loss.mean()
[docs] def compute_score( self, output, target, smooth=0.0, eps=1e-7, dims=None ) -> torch.Tensor: return dice_score(output, target, smooth, eps, dims)