minerva.losses.dice
Attributes
Classes
Base class for all neural network modules. |
Module Contents
- minerva.losses.dice.BINARY_MODE = 'binary'
- class minerva.losses.dice.DiceLoss(mode, classes=None, log_loss=False, from_logits=True, smooth=0.0, ignore_index=None, eps=1e-07)[source]
Bases:
torch.nn.modules.loss._Loss
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- Parameters:
mode (str)
classes (Optional[List[int]])
log_loss (bool)
from_logits (bool)
smooth (float)
ignore_index (Optional[int])
eps (float)
Initialize the DiceLoss class.
Parameters
- modestr
Loss mode. Valid options are ‘binary’, ‘multiclass’, or ‘multilabel’.
- classesOptional[List[int]], optional
List of classes that contribute in loss computation. By default, all channels are included. By default None
- log_lossbool, optional
If True, loss is computed as - log(dice_coeff). If False, loss is computed as 1 - dice_coeff, by default False
- from_logitsbool, optional
If True, assumes input is raw logits. If False, assumes input is probabilities., by default True
- smoothfloat, optional
Smoothness constant for dice coefficient (a), by default 0.0
- ignore_indexOptional[int], optional
Label that indicates ignored pixels (does not contribute to loss), by default None
- epsfloat, optional
A small epsilon for numerical stability to avoid zero division error (denominator will be always greater or equal to eps), by default 1e-7
Raises
- AssertionError
If the mode is not one of ‘binary’, ‘multiclass’, or ‘multilabel’ and classes are being masked with mode=’binary’.
- classes = None
- eps = 1e-07
- forward(y_pred, y_true)[source]
- Parameters:
y_pred (torch.Tensor)
y_true (torch.Tensor)
- Return type:
torch.Tensor
- from_logits = True
- ignore_index = None
- log_loss = False
- mode
- smooth = 0.0
- minerva.losses.dice.MULTICLASS_MODE = 'multiclass'
- minerva.losses.dice.MULTILABEL_MODE = 'multilabel'