Source code for minerva.transforms.tfc
import numpy as np
import torch
import torch.fft as fft
from torch import nn
from .transform import _Transform
from typing import Union, Tuple
[docs]
class TFC_Transforms(_Transform):
"""
Transformations used in the TFC model.
It consists of time and frequency domain data augmentation.
"""
[docs]
def __call__(self, x: Union[np.ndarray, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Method that applies the transformations to the input data.
Parameters
----------
- x: Union[np.ndarray, torch.Tensor]
The input data to be transformed
Returns
-------
- Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
A tuple with the original data, the transformed data in the time domain the frequency version of the data and the tranformed data in frequency domain
"""
if isinstance(x, np.ndarray):
x = torch.from_numpy(x).type(torch.FloatTensor)
device = torch.device("cpu")
elif isinstance(x, torch.Tensor):
device = x.device
x = x.type(torch.FloatTensor)
else:
print("The type of the input is: ", type(x), "It is ", x)
raise TypeError("The input data must be a numpy array or a torch tensor")
freq = fft.fft(x).abs()
y1 = self.DataTransform_TD(x)
y2 = self.DataTransform_FD(freq)
return x.type(torch.FloatTensor).to(device), y1.type(torch.FloatTensor).to(device), freq.type(torch.FloatTensor).to(device), y2.type(torch.FloatTensor).to(device)
[docs]
def one_hot_encoding(self, X: np.ndarray, n_values: int = None):
"""
One-hot encoding of the input data
Parameters
----------
- X: np.ndarray
The input data to be encoded
- n_values: int
The number of classes in the data. If None, the number of classes is inferred from the data
Returns
-------
- np.ndarray
The one-hot encoded data
"""
X = [int(x) for x in X]
if n_values is None:
n_values = np.max(X) + 1
b = torch.eye(n_values)[X]
return b
[docs]
def DataTransform_TD(self, sample: np.ndarray, jitter_ratio: float = 0.8) -> np.ndarray:
"""
Weak and strong augmentations.
Consists of jittering and removing time components.
Parameters
----------
- sample: np.ndarray
The input data to be augmented
- jitter_ratio: float
The ratio of the jittering transformation
Returns
-------
- np.ndarray
The augmented data
"""
aug_1 = self.jitter(sample, jitter_ratio)
li = torch.randint(0, 4, (sample.shape[0],))
li_onehot = self.one_hot_encoding(li)
aug_1[(1 - li_onehot[:, 0]).bool()] = 0
return aug_1
[docs]
def DataTransform_FD(self, sample: np.ndarray) -> np.ndarray:
"""
Weak and strong augmentations.
Consists of jittering and adding or removing frequency components.
Parameters
----------
- sample: np.ndarray
The input data to be augmented
Returns
-------
- np.ndarray
The augmented data
"""
aug_1 = self.remove_frequency(sample, 0.1)
aug_2 = self.add_frequency(sample, 0.1)
li = torch.randint(0, 2, (sample.shape[0],))
li_onehot = self.one_hot_encoding(li,2)
aug_1[(1 - li_onehot[:, 0]).bool()] = 0
aug_2[(1 - li_onehot[:, 1]).bool()] = 0
aug_F = aug_1 + aug_2
return aug_F
[docs]
def jitter(self, x: np.ndarray, sigma: float=0.8):
"""
Add noise to the input data.
Parameters
----------
- x: np.ndarray
The input data to be augmented
- sigma: float
The standard deviation of the noise
Returns
-------
- np.ndarray
The data with added noise
"""
# https://arxiv.org/pdf/1706.00527.pdf
return x + torch.normal(0., sigma, x.shape)
[docs]
def remove_frequency(self, x:np.ndarray, maskout_ratio: float=0):
"""
function to remove frequency components from the input data.
Parameters
----------
- x: np.ndarray
The input data to be augmented
- maskout_ratio: float
The ratio of the frequency components to be removed
Returns
-------
- np.ndarray
The data with removed frequency components
"""
# verify if on gpu
if x.device == torch.device('cpu'):
mask = torch.FloatTensor(x.shape).uniform_() > maskout_ratio
else:
mask = torch.cuda.FloatTensor(x.shape).uniform_() > maskout_ratio # maskout_ratio are False
mask = mask.to(x.device)
return x*mask
[docs]
def add_frequency(self, x: np.ndarray, pertub_ratio:float=0,):
"""
function to add frequency components to the input data.
Parameters
----------
- x: np.ndarray
The input data to be augmented
- pertub_ratio: float
The ratio of the frequency components to be added
Returns
-------
- np.ndarray
The data with added frequency components
"""
if x.device == torch.device('cpu'):
mask = torch.FloatTensor(x.shape).uniform_() > (1-pertub_ratio)
else:
mask = torch.cuda.FloatTensor(x.shape).uniform_() > (1-pertub_ratio) # only pertub_ratio of all values are True
mask = mask.to(x.device)
max_amplitude = x.max()
random_am = torch.rand(mask.shape)*(max_amplitude*0.1)
pertub_matrix = mask*random_am
return x+pertub_matrix