minerva.transforms.tfc
Classes
Transformations used in the TFC model. |
Module Contents
- class minerva.transforms.tfc.TFC_Transforms[source]
Bases:
minerva.transforms.transform._Transform
Transformations used in the TFC model. It consists of time and frequency domain data augmentation.
- DataTransform_FD(sample)[source]
Weak and strong augmentations. Consists of jittering and adding or removing frequency components.
Parameters
- sample: np.ndarray
The input data to be augmented
Returns
- np.ndarray
The augmented data
- Parameters:
sample (numpy.ndarray)
- Return type:
numpy.ndarray
- DataTransform_TD(sample, jitter_ratio=0.8)[source]
Weak and strong augmentations. Consists of jittering and removing time components.
Parameters
- sample: np.ndarray
The input data to be augmented
- jitter_ratio: float
The ratio of the jittering transformation
Returns
- np.ndarray
The augmented data
- Parameters:
sample (numpy.ndarray)
jitter_ratio (float)
- Return type:
numpy.ndarray
- __call__(x)[source]
Method that applies the transformations to the input data.
Parameters
- x: Union[np.ndarray, torch.Tensor]
The input data to be transformed
Returns
- Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
A tuple with the original data, the transformed data in the time domain the frequency version of the data and the tranformed data in frequency domain
- Parameters:
x (Union[numpy.ndarray, torch.Tensor])
- Return type:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
- add_frequency(x, pertub_ratio=0)[source]
function to add frequency components to the input data.
Parameters
- x: np.ndarray
The input data to be augmented
- pertub_ratio: float
The ratio of the frequency components to be added
Returns
- np.ndarray
The data with added frequency components
- Parameters:
x (numpy.ndarray)
pertub_ratio (float)
- jitter(x, sigma=0.8)[source]
Add noise to the input data.
Parameters
- x: np.ndarray
The input data to be augmented
- sigma: float
The standard deviation of the noise
Returns
- np.ndarray
The data with added noise
- Parameters:
x (numpy.ndarray)
sigma (float)
- one_hot_encoding(X, n_values=None)[source]
One-hot encoding of the input data
Parameters
- X: np.ndarray
The input data to be encoded
- n_values: int
The number of classes in the data. If None, the number of classes is inferred from the data
Returns
- np.ndarray
The one-hot encoded data
- Parameters:
X (numpy.ndarray)
n_values (int)
- remove_frequency(x, maskout_ratio=0)[source]
function to remove frequency components from the input data.
Parameters
- x: np.ndarray
The input data to be augmented
- maskout_ratio: float
The ratio of the frequency components to be removed
Returns
- np.ndarray
The data with removed frequency components
- Parameters:
x (numpy.ndarray)
maskout_ratio (float)