minerva.models.nets.image.setr
Classes
SET-R model with PUP head for image segmentation. |
|
Multi level feature aggretation head of SETR (as in |
|
Naive upsampling head and Progressive upsampling head of SETR |
|
Base class for all neural network modules. |
Module Contents
- class minerva.models.nets.image.setr.SETR_PUP(image_size=512, patch_size=16, num_layers=24, num_heads=16, hidden_dim=1024, mlp_dim=4096, encoder_dropout=0.1, num_classes=1000, norm_layer=None, decoder_channels=256, num_convs=4, up_scale=2, kernel_size=3, align_corners=False, decoder_dropout=0.1, conv_norm=None, conv_act=None, interpolate_mode='bilinear', loss_fn=None, optimizer_type=None, optimizer_params=None, train_metrics=None, val_metrics=None, test_metrics=None, aux_output=True, aux_output_layers=None, aux_weights=None, load_backbone_path=None, freeze_backbone_on_load=True, learning_rate=0.001, loss_weights=None, original_resolution=None, head_lr_factor=1.0, test_engine=None)[source]
Bases:
lightning.pytorch.LightningModule
SET-R model with PUP head for image segmentation.
Methods
- forward(x: torch.Tensor) -> torch.Tensor
Forward pass of the model.
- _compute_metrics(y_hat: torch.Tensor, y: torch.Tensor, step_name: str)
Compute metrics for the given step.
- _loss_func(y_hat: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]], y: torch.Tensor) -> torch.Tensor
Calculate the loss between the output and the input data.
- _single_step(batch: torch.Tensor, batch_idx: int, step_name: str)
Perform a single step of the training/validation loop.
- training_step(batch: torch.Tensor, batch_idx: int)
Perform a single training step.
- validation_step(batch: torch.Tensor, batch_idx: int)
Perform a single validation step.
- test_step(batch: torch.Tensor, batch_idx: int)
Perform a single test step.
- predict_step(batch: torch.Tensor, batch_idx: int, dataloader_idx: Optional[int] = None)
Perform a single prediction step.
- load_backbone(path: str, freeze: bool = False)
Load a pre-trained backbone.
- configure_optimizers()
Configure the optimizer for the model.
- create_from_dict(config: Dict) -> “SETR_PUP”
Create an instance of SETR_PUP from a configuration dictionary.
Initialize the SETR model with Progressive Upsampling Head.
Parameters
- image_sizeUnion[int, Tuple[int, int]], optional
Size of the input image, by default 512.
- patch_sizeint, optional
Size of the patches to be extracted from the input image, by default 16.
- num_layersint, optional
Number of transformer layers, by default 24.
- num_headsint, optional
Number of attention heads, by default 16.
- hidden_dimint, optional
Dimension of the hidden layer, by default 1024.
- mlp_dimint, optional
Dimension of the MLP layer, by default 4096.
- encoder_dropoutfloat, optional
Dropout rate for the encoder, by default 0.1.
- num_classesint, optional
Number of output classes, by default 1000.
- norm_layerOptional[nn.Module], optional
Normalization layer, by default None.
- decoder_channelsint, optional
Number of channels in the decoder, by default 256.
- num_convsint, optional
Number of convolutional layers in the decoder, by default 4.
- up_scaleint, optional
Upscaling factor for the decoder, by default 2.
- kernel_sizeint, optional
Kernel size for the convolutional layers, by default 3.
- align_cornersbool, optional
Whether to align corners when interpolating, by default False.
- decoder_dropoutfloat, optional
Dropout rate for the decoder, by default 0.1.
- conv_normOptional[nn.Module], optional
Normalization layer for the convolutional layers, by default None.
- conv_actOptional[nn.Module], optional
Activation function for the convolutional layers, by default None.
- interpolate_modestr, optional
Interpolation mode, by default “bilinear”.
- loss_fnOptional[nn.Module], optional
Loss function, when None defaults to nn.CrossEntropyLoss, by default None.
- optimizer_typeOptional[type], optional
Type of optimizer, by default None.
- optimizer_paramsOptional[Dict], optional
Parameters for the optimizer, by default None.
- train_metricsOptional[Dict[str, Metric]], optional
Metrics for training, by default None.
- val_metricsOptional[Dict[str, Metric]], optional
Metrics for validation, by default None.
- test_metricsOptional[Dict[str, Metric]], optional
Metrics for testing, by default None.
- aux_outputbool, optional
Whether to use auxiliary outputs, by default True.
- aux_output_layerslist[int], optional
Layers for auxiliary outputs, when None it defaults to [9, 14, 19].
- aux_weightslist[float], optional
Weights for auxiliary outputs, when None it defaults [0.3, 0.3, 0.3].
- load_backbone_pathOptional[str], optional
Path to load the backbone model, by default None.
- freeze_backbone_on_loadbool, optional
Whether to freeze the backbone model on load, by default True.
- learning_ratefloat, optional
Learning rate, by default 1e-3.
- loss_weightsOptional[list[float]], optional
Weights for the loss function, by default None.
- original_resolutionOptional[Tuple[int, int]], optional
The original resolution of the input image in the pre-training weights. When None, positional embeddings will not be interpolated. Defaults to None.
- head_lr_factorfloat, optional
Learning rate factor for the head. used if you need different learning rates for backbone and prediction head, by default 1.0.
- test_engineOptional[_Engine], optional
Engine used for test and validation steps. When None, behavior of all steps, training, testing and validation is the same, by default None.
- _compute_metrics(y_hat, y, step_name)[source]
- Parameters:
y_hat (torch.Tensor)
y (torch.Tensor)
step_name (str)
- _loss_func(y_hat, y)[source]
Calculate the loss between the output and the input data.
Parameters
- y_hattorch.Tensor
The output data from the forward pass.
- ytorch.Tensor
The input data/label.
Returns
- torch.Tensor
The loss value.
- Parameters:
y_hat (Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]])
y (torch.Tensor)
- Return type:
torch.Tensor
- _single_step(batch, batch_idx, step_name)[source]
Perform a single step of the training/validation loop.
Parameters
- batchtorch.Tensor
The input data.
- batch_idxint
The index of the batch.
- step_namestr
The name of the step, either “train” or “val”.
Returns
- torch.Tensor
The loss value.
- Parameters:
batch (torch.Tensor)
batch_idx (int)
step_name (str)
- aux_weights = None
- configure_optimizers()[source]
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode.
- Return:
Any of these 6 options.
Single optimizer.
List or Tuple of optimizers.
Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple
lr_scheduler_config
).Dictionary, with an
"optimizer"
key, and (optionally) a"lr_scheduler"
key whose value is a single LR scheduler orlr_scheduler_config
.None - Fit will run without any optimizer.
The
lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, }
When there are schedulers in which the
.step()
method is conditioned on a value, such as thetorch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that thelr_scheduler_config
contains the keyword"monitor"
set to the metric name that the scheduler should be conditioned on.Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in yourLightningModule
.- Note:
Some things to know:
Lightning calls
.backward()
and.step()
automatically in case of automatic optimization.If a learning rate scheduler is specified in
configure_optimizers()
with key"interval"
(default “epoch”) in the scheduler configuration, Lightning will call the scheduler’s.step()
method automatically in case of automatic optimization.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizer.If you use
torch.optim.LBFGS
, Lightning handles the closure function automatically for you.If you use multiple optimizers, you will have to switch to ‘manual optimization’ mode and step them yourself.
If you need to control how often the optimizer steps, override the
optimizer_step()
hook.
- forward(x)[source]
Same as
torch.nn.Module.forward()
.- Args:
*args: Whatever you decide to pass into the forward method. **kwargs: Keyword arguments are also possible.
- Return:
Your model’s output
- Parameters:
x (torch.Tensor)
- Return type:
torch.Tensor
- head_lr_factor = 1.0
- learning_rate = 0.001
- loss_fn = None
- metrics
- model
- num_classes = 1000
- optimizer_type = None
- predict_step(batch, batch_idx, dataloader_idx=None)[source]
Step function called during
predict()
. By default, it callsforward()
. Override to add any processing logic.The
predict_step()
is used to scale inference on multi-devices.To prevent an OOM error, it is possible to use
BasePredictionWriter
callback to write the predictions to disk or database after each batch or on epoch end.The
BasePredictionWriter
should be used while using a spawn based accelerator. This happens forTrainer(strategy="ddp_spawn")
or training on 8 TPU cores withTrainer(accelerator="tpu", devices=8)
as predictions won’t be returned.- Args:
batch: The output of your data iterable, normally a
DataLoader
. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch.(only if multiple dataloaders used)
- Return:
Predicted output (optional).
Example
class MyModel(LightningModule): def predict_step(self, batch, batch_idx, dataloader_idx=0): return self(batch) dm = ... model = MyModel() trainer = Trainer(accelerator="gpu", devices=2) predictions = trainer.predict(model, dm)
- Parameters:
batch (torch.Tensor)
batch_idx (int)
dataloader_idx (Optional[int])
- test_engine = None
- test_step(batch, batch_idx)[source]
Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
- Args:
batch: The output of your data iterable, normally a
DataLoader
. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch.(only if multiple dataloaders used)
- Return:
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch.
# if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc})
If you pass in multiple test dataloaders,
test_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
- Note:
If you don’t need to test you don’t need to implement this method.
- Note:
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.
- Parameters:
batch (torch.Tensor)
batch_idx (int)
- training_step(batch, batch_idx)[source]
Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
- Args:
batch: The output of your data iterable, normally a
DataLoader
. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch.(only if multiple dataloaders used)
- Return:
Tensor
- The loss tensordict
- A dictionary which can include any keys, but must include the key'loss'
in the case of automatic optimization.None
- In automatic optimization, this will skip to the next batch (but is not supported for multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning the loss is not required.
In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Example:
def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss
To use multiple optimizers, you can switch to ‘manual optimization’ and control their stepping:
def __init__(self): super().__init__() self.automatic_optimization = False # Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx): opt1, opt2 = self.optimizers() # do training_step with encoder ... opt1.step() # do training_step with decoder ... opt2.step()
- Note:
When
accumulate_grad_batches
> 1, the loss returned here will be automatically normalized byaccumulate_grad_batches
internally.
- Parameters:
batch (torch.Tensor)
batch_idx (int)
- validation_step(batch, batch_idx)[source]
Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.
- Args:
batch: The output of your data iterable, normally a
DataLoader
. batch_idx: The index of this batch. dataloader_idx: The index of the dataloader that produced this batch.(only if multiple dataloaders used)
- Return:
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch.
# if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc})
If you pass in multiple val dataloaders,
validation_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
- Note:
If you don’t need to validate you don’t need to implement this method.
- Note:
When the
validation_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.
- Parameters:
batch (torch.Tensor)
batch_idx (int)
- Parameters:
image_size (Union[int, Tuple[int, int]])
patch_size (int)
num_layers (int)
num_heads (int)
hidden_dim (int)
mlp_dim (int)
encoder_dropout (float)
num_classes (int)
norm_layer (Optional[torch.nn.Module])
decoder_channels (int)
num_convs (int)
up_scale (int)
kernel_size (int)
align_corners (bool)
decoder_dropout (float)
conv_norm (Optional[torch.nn.Module])
conv_act (Optional[torch.nn.Module])
interpolate_mode (str)
loss_fn (Optional[torch.nn.Module])
optimizer_type (Optional[type])
optimizer_params (Optional[Dict])
train_metrics (Optional[Dict[str, torchmetrics.Metric]])
val_metrics (Optional[Dict[str, torchmetrics.Metric]])
test_metrics (Optional[Dict[str, torchmetrics.Metric]])
aux_output (bool)
aux_output_layers (Optional[list[int]])
aux_weights (Optional[list[float]])
load_backbone_path (Optional[str])
freeze_backbone_on_load (bool)
learning_rate (float)
loss_weights (Optional[list[float]])
original_resolution (Optional[Tuple[int, int]])
head_lr_factor (float)
test_engine (Optional[minerva.engines.engine._Engine])
- class minerva.models.nets.image.setr._SETRMLAHead(channels, conv_norm, conv_act, in_channels, out_channels, num_classes, mla_channels=128, up_scale=4, kernel_size=3, align_corners=True, dropout=0.1, threshold=None)[source]
Bases:
torch.nn.Module
Multi level feature aggretation head of SETR (as in https://arxiv.org/pdf/2012.15840.pdf)
Note: This has not been tested yet!
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- Parameters:
channels (int)
conv_norm (Optional[torch.nn.Module])
conv_act (Optional[torch.nn.Module])
in_channels (List[int])
out_channels (int)
num_classes (int)
mla_channels (int)
up_scale (int)
kernel_size (int)
align_corners (bool)
dropout (float)
threshold (Optional[float])
- cls_seg
- dropout
- num_classes
- out_channels
- threshold = None
- up_convs
- class minerva.models.nets.image.setr._SETRUPHead(channels, in_channels, num_classes, norm_layer, conv_norm, conv_act, num_convs, up_scale, kernel_size, align_corners, dropout, interpolate_mode)[source]
Bases:
torch.nn.Module
Naive upsampling head and Progressive upsampling head of SETR (as in https://arxiv.org/pdf/2012.15840.pdf).
The SETR PUP Head.
Parameters
- channelsint
Number of output channels.
- in_channelsint
Number of input channels.
- num_classesint
Number of output classes.
- norm_layernn.Module
Normalization layer.
- conv_normnn.Module
Convolutional normalization layer.
- conv_actnn.Module
Convolutional activation layer.
- num_convsint
Number of convolutional layers.
- up_scaleint
Upsampling scale factor.
- kernel_sizeint
Kernel size for convolutional layers.
- align_cornersbool
Whether to align corners during upsampling.
- dropoutfloat
Dropout rate.
- interpolate_modestr
Interpolation mode for upsampling.
Raises
- AssertionError
If kernel_size is not 1 or 3.
- cls_seg
- dropout
- norm
- num_classes
- out_channels
- up_convs
- Parameters:
channels (int)
in_channels (int)
num_classes (int)
norm_layer (torch.nn.Module)
conv_norm (torch.nn.Module)
conv_act (torch.nn.Module)
num_convs (int)
up_scale (int)
kernel_size (int)
align_corners (bool)
dropout (float)
interpolate_mode (str)
- class minerva.models.nets.image.setr._SetR_PUP(image_size, patch_size, num_layers, num_heads, hidden_dim, mlp_dim, num_convs, num_classes, decoder_channels, up_scale, encoder_dropout, kernel_size, decoder_dropout, norm_layer, interpolate_mode, conv_norm, conv_act, align_corners, aux_output, aux_output_layers, original_resolution)[source]
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- Parameters:
image_size (Union[int, Tuple[int, int]])
patch_size (int)
num_layers (int)
num_heads (int)
hidden_dim (int)
mlp_dim (int)
num_convs (int)
num_classes (int)
decoder_channels (int)
up_scale (int)
encoder_dropout (float)
kernel_size (int)
decoder_dropout (float)
norm_layer (torch.nn.Module)
interpolate_mode (str)
conv_norm (torch.nn.Module)
conv_act (torch.nn.Module)
align_corners (bool)
aux_output (bool)
aux_output_layers (Optional[List[int]])
original_resolution (Optional[Tuple[int, int]])
Initializes the SETR PUP head.
Parameters
- image_sizeint or Tuple[int, int]
The size of the input image.
- patch_sizeint
The size of each patch in the input image.
- num_layersint
The number of layers in the transformer encoder.
- num_headsint
The number of attention heads in the transformer encoder.
- hidden_dimint
The hidden dimension of the transformer encoder.
- mlp_dimint
The dimension of the feed-forward network in the transformer encoder
- num_convsint
The number of convolutional layers in the decoder.
- num_classesint
The number of output classes.
- decoder_channelsint
The number of channels in the decoder.
- up_scaleint
The scale factor for upsampling in the decoder.
- encoder_dropoutfloat
The dropout rate for the transformer encoder.
- kernel_sizeint
The kernel size for the convolutional layers in the decoder.
- decoder_dropoutfloat
The dropout rate for the decoder.
- norm_layernn.Module
The normalization layer to be used.
- interpolate_modestr
The mode for interpolation during upsampling.
- conv_normnn.Module
The normalization layer to be used in the decoder convolutional layers.
- conv_actnn.Module
The activation function to be used in the decoder convolutional layers.
- align_cornersbool
Whether to align corners during upsampling.
- aux_output: bool
Whether to use auxiliary outputs. If True, aux_output_layers must be provided.
- aux_output_layers: List[int], optional
The layers to use for auxiliary outputs. Must have exacly 3 values.
- original_resolution: Tuple[int, int], optional
The original resolution of the input image in the pre-training weights. When None, positional embeddings will not be interpolated.
- aux_head1
- aux_head2
- aux_head3
- aux_output
- aux_output_layers
- decoder
- encoder