minerva.models.nets.tfc

Classes

IgnoreWhenBatch1

This class is used to ignore some processes when the batch size is 1. It is necessary in Batch Normalization.

TFC_Backbone

A convolutional version of backbone of the Temporal-Frequency Convolutional (TFC) model.

TFC_Conv_Block

A standart convolutional block for the Temporal-Frequency Convolutional (TFC) model.

TFC_PredicionHead

A simple prediction head for the Temporal-Frequency Convolutional (TFC) model.

TFC_Standard_Projector

A standart projector for the Temporal-Frequency Convolutional (TFC) model.

Module Contents

class minerva.models.nets.tfc.IgnoreWhenBatch1(module, active=False)[source]

Bases: torch.nn.Module

This class is used to ignore some processes when the batch size is 1. It is necessary in Batch Normalization.

Parameters

  • module: nn.Module

    The module to be used in the forward method that will be ignored when the batch size is 1.

  • active: bool

    If True, the module is only used in the forward method if batch size is different from 1. If False, the module is always used.

active = False
forward(x)[source]

The forward method of the IgnoreWhenBatch1 class. It receives the input data and returns the output of the module if the batch size is greater than 1. Otherwise, it returns the input data.

Parameters

  • x: torch.Tensor

    The input data

Returns

  • torch.Tensor

    The output of the module if the batch size is greater than 1. Otherwise, the input data.

module
Parameters:
  • module (torch.nn.Module)

  • active (bool)

class minerva.models.nets.tfc.TFC_Backbone(input_channels, TS_length, single_encoding_size=128, transform=None, time_encoder=None, frequency_encoder=None, time_projector=None, frequency_projector=None, adapter=None, batch_1_correction=False)[source]

Bases: torch.nn.Module

A convolutional version of backbone of the Temporal-Frequency Convolutional (TFC) model. The backbone is composed of two convolutional neural networks that extract features from the input data in the time domain and frequency domain. The features are then projected to a latent space. This class implements the forward method that receives the input data and returns the features extracted in the time domain and frequency domain.

Constructor of the TFC_Backbone class.

Parameters

  • input_channels: int

    The number of channels in the input data

  • TS_length: int

    The number of time steps in the input data

  • single_encoding_size: int

    The size of the encoding in the latent space of frequency or time domain individually

  • transform: _Transform

    The transformation to be applied to the input data. If None, a default transformation is applied that includes data augmentation and frequency domain transformation

  • time_encoder: Optional[nn.Module]

    The encoder for the time domain. If None, a default encoder is used

  • frequency_encoder: Optional[nn.Module]

    The encoder for the frequency domain. If None, a default encoder is used

  • time_projector: Optional[nn.Module]

    The projector for the time domain. If None, a default projector is used. If passing, make sure to correct calculate the input features by backbone

  • frequency_projector: Optional[nn.Module]

    The projector for the frequency domain. If None, a default projector is used. If passing, make sure to correct calculate the input features by backbone

  • adapterCallable[[torch.Tensor], torch.Tensor], optional

    An adapter to be used from the backbone to the head, by default None.

  • batch_1_correction: bool

    If True, the batch normalization is ignored when the batch size is 1, If False, a runtime error is raised when the batch size is 1 Standard is False

_calculate_fc_input_features(encoder, input_shape, adapter=None)[source]

Calculate the input features of the fully connected layer after the encoders (conv blocks).

Parameters

  • encoder: torch.nn.Module

    The encoder to calculate the input features

  • input_shape: Tuple[int, int]

    The input shape of the data

  • adapterCallable[[torch.Tensor], torch.Tensor], optional

    An adapter to be used from the backbone to the head, by default None.

Returns

  • int

    The number of features to be passed to the fully connected layer

Parameters:
  • encoder (torch.nn.Module)

  • input_shape (Tuple[int, int])

  • adapter (Optional[Callable[[torch.Tensor], torch.Tensor]])

Return type:

int

adapter = None
forward(x)[source]

The forward method of the backbone. It receives the input data in the time domain and frequency domain and returns the features extracted in the time domain and frequency domain.

Parameters

  • x: torch.Tensor

    The input data

Returns

  • tuple

    A tuple with the features extracted in the time domain and frequency domain, h_time, z_time, h_freq, z_freq respectively

Parameters:

x (torch.Tensor)

Return type:

torch.Tensor

frequency_encoder = None
frequency_projector = None
get_representations()[source]

This function returns the representations of the time and frequency domain extracted by the backbone. The h and z representations, after ther encoder and after the projector, respectively. This function must be called after the forward method.

Returns

  • Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]

time_encoder = None
time_projector = None
transform = None
Parameters:
  • input_channels (int)

  • TS_length (int)

  • single_encoding_size (int)

  • transform (minerva.transforms.transform._Transform)

  • time_encoder (Optional[torch.nn.Module])

  • frequency_encoder (Optional[torch.nn.Module])

  • time_projector (Optional[torch.nn.Module])

  • frequency_projector (Optional[torch.nn.Module])

  • adapter (Optional[Callable[[torch.Tensor], torch.Tensor]])

  • batch_1_correction (bool)

class minerva.models.nets.tfc.TFC_Conv_Block(input_channels, batch_1_correction=False)[source]

Bases: torch.nn.Module

A standart convolutional block for the Temporal-Frequency Convolutional (TFC) model.

This class implements the forward method that receives the input data and returns the features extracted by the block.

Constructor of the TFC_Conv_Block class.

Parameters

  • input_channels: int

    The number of channels in the input data

  • batch_1_correction: bool

    If True, the batch normalization is ignored when the batch size is 1, If False, a runtime error is raised when the batch size is 1 Standard is False

block
forward(x)[source]

The forward method of the convolutional block. It receives the input data and returns the features extracted by the block.

Parameters

  • x: torch.Tensor

    The input data

Returns

  • torch.Tensor

    The features extracted by the block

Parameters:

x (torch.Tensor)

Parameters:
  • input_channels (int)

  • batch_1_correction (bool)

class minerva.models.nets.tfc.TFC_PredicionHead(num_classes, connections=2, single_encoding_size=128, argmax_output=False)[source]

Bases: torch.nn.Module

A simple prediction head for the Temporal-Frequency Convolutional (TFC) model. The prediction head is composed of a linear layer that receives the features extracted by the backbone and returns the prediction of the model. This class implements the forward method that receives the features extracted by the backbone and returns the prediction of the model.

Constructor of the TFC_PredicionHead class.

Parameters

  • num_classes: int

    The number of classes in the classification task

  • connections: int

    The number of pipelines in the backbone. If 1, only the time or frequency domain is used. If 2, both domains are used. Other values are treated as 1.

  • single_encoding_size: int

    The size of the encoding in the latent space of frequency or time domain individually

  • argmax: bool

    If True, the argmax function is applied to the prediction. If False, the prediction returns the logits

argmax_output = False
forward(emb)[source]

The forward method of the prediction head. It receives the features extracted by the backbone and returns the prediction of the model.

Parameters

  • emb: torch.Tensor

    The features extracted by the backbone

Returns

  • torch.Tensor

    The prediction of the model

Parameters:

emb (torch.Tensor)

Return type:

torch.Tensor

logits
logits_simple
Parameters:
  • num_classes (int)

  • connections (int)

  • single_encoding_size (int)

  • argmax_output (bool)

class minerva.models.nets.tfc.TFC_Standard_Projector(input_channels, single_encoding_size, batch_1_correction=False)[source]

Bases: torch.nn.Module

A standart projector for the Temporal-Frequency Convolutional (TFC) model.

This class implements the forward method that receives the input data and returns the features extracted by the projector.

Constructor of the TFC_Standard_Projector class.

Parameters

  • input_channels: int

    The number of channels in the input data

  • single_encoding_size: int

    The size of the encoding in the latent space of frequency or time domain individually

  • batch_1_correction: bool

    If True, the batch normalization is ignored when the batch size is 1, If False, a runtime error is raised when the batch size is 1 Standard is False

forward(x)[source]

The forward method of the projector. It receives the input data and returns the features extracted by the projector.

Parameters

  • x: torch.Tensor

    The input data

Returns

  • torch.Tensor

    The features extracted by the projector

Parameters:

x (torch.Tensor)

projector
Parameters:
  • input_channels (int)

  • single_encoding_size (int)

  • batch_1_correction (bool)