minerva.models.nets.tnc

Classes

ConvBlock

Base class for all neural network modules.

DilatedConvEncoder

Base class for all neural network modules.

Discriminator_TNC

Base class for all neural network modules.

ResNetEncoder

Base class for all neural network modules.

RnnEncoder

Base class for all neural network modules.

SamePadConv

Base class for all neural network modules.

TSEncoder

Base class for all neural network modules.

Module Contents

class minerva.models.nets.tnc.ConvBlock(in_channels, out_channels, kernel_size, dilation, final=False)[source]

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will also have their parameters converted when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

Parameters:
  • in_channels (int)

  • out_channels (int)

  • kernel_size (int)

  • dilation (int)

  • final (bool)

A single block of dilated convolutional layers followed by a residual connection and activation.

Parameters:

  • in_channels (int):

    Number of input channels to the first convolutional layer.

  • out_channels (int):

    Number of output channels from the final convolutional layer.

  • kernel_size (int):

    Size of the convolutional kernel.

  • dilation (int):

    Dilation factor for the convolutional layers.

  • final (bool, optional):

    Whether this is the final block in the sequence (default: False).

conv1
conv2
forward(x)[source]
projector
class minerva.models.nets.tnc.DilatedConvEncoder(in_channels, channels, kernel_size)[source]

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will also have their parameters converted when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

Parameters:
  • in_channels (int)

  • channels (list)

  • kernel_size (int)

This module implements a stack of dilated convolutional blocks for feature extraction from sequential data.

Parameters:

  • in_channels (int):

    Number of input channels to the first convolutional layer.

  • channels (list):

    List of integers specifying the number of output channels for each convolutional layer.

  • kernel_size (int):

    Size of the convolutional kernel.

forward(x)[source]
net
class minerva.models.nets.tnc.Discriminator_TNC(input_size, max_pool=False)[source]

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will also have their parameters converted when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

Parameters:
  • input_size (int)

  • max_pool (bool)

A discriminator model used for contrastive learning tasks, predicting whether two inputs belong to the same neighborhood in the feature space.

Parameters

input_sizeint

Dimensionality of each input.

max_poolbool, optional

Whether to apply max pooling before feeding into the projection head (default is False). If using TS2Vec encoder, set to True; if using RNN, set to False.

Examples

>>> device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
>>> discriminator = Discriminator_TNC(input_size=320, max_pool=True).to(device)
>>> forward_ts2vec1 = torch.randn(12, 128, 320)  # Example tensor with shape (batch_size, timesteps, encoding_size)
>>> forward_ts2vec3 = torch.randn(12, 128, 320)  # Another example tensor with shape (batch_size, timesteps, encoding_size)
>>> output = discriminator(forward_ts2vec1, forward_ts2vec3)
>>> print(output.shape)
torch.Size([12])
>>> # Example with RNN encoder
>>> rnn_encoder = RnnEncoder(hidden_size=100, in_channel=6, encoding_size=320, cell_type='GRU', num_layers=1, device=device, dropout=0.0, bidirectional=True).to(device)
>>> element1 = torch.randn(12, 128, 6)  # Batch size: 12, Time steps: 128, Input channels: 6
>>> forward_rnn1 = rnn_encoder(element1.to(device))
>>> forward_rnn2 = rnn_encoder(element1.to(device))
>>> discriminator = Discriminator_TNC(input_size=320, max_pool=False).to(device)
>>> output = discriminator(forward_rnn1, forward_rnn2)
>>> print(output.shape)
torch.Size([12])

Notes

  • The input tensors should have the shape (batch_size, input_size).

  • The output tensor will have the shape (batch_size,) representing the predicted probabilities.

forward(x, x_tild)[source]

Predict the probability of the two inputs belonging to the same neighborhood.

Parameters:

  • x (torch.Tensor):

    Input tensor of shape (batch_size, input_size).

  • x_tild (torch.Tensor):

    Input tensor of shape (batch_size, input_size).

Returns:

  • p (torch.Tensor):

    Output tensor of shape (batch_size,) representing the predicted probabilities.

input_size
max_pool = False
model
class minerva.models.nets.tnc.ResNetEncoder(input_shape, residual_block_cls=ResNetBlock, activation_cls=torch.nn.ReLU, num_residual_blocks=5, reduction_ratio=2, avg_pooling=True, **residual_block_cls_kwargs)[source]

Bases: minerva.models.nets.time_series.resnet._ResNet1D

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will also have their parameters converted when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

Parameters:
  • input_shape (Tuple[int, int])

  • residual_block_cls (type)

  • activation_cls (type)

  • num_residual_blocks (int)

  • reduction_ratio (int)

  • avg_pooling (bool)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(x)[source]
class minerva.models.nets.tnc.RnnEncoder(hidden_size, in_channel, encoding_size, cell_type='GRU', num_layers=1, device='cpu', dropout=0, bidirectional=True, permute=False, squeeze=True)[source]

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will also have their parameters converted when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

Parameters:
  • hidden_size (int)

  • in_channel (int)

  • encoding_size (int)

  • cell_type (str)

  • num_layers (int)

  • device (str)

  • dropout (int)

  • bidirectional (bool)

  • permute (bool)

  • squeeze (bool)

Initializes an RnnEncoder instance.

This encoder utilizes a recurrent neural network (RNN) to encode sequential data, such as accelerometer and gyroscope readings from human activity recognition tasks.

Parameters

hidden_sizeint

Size of the hidden state in the RNN.

in_channelint

Number of input channels (e.g., dimensions of accelerometer and gyroscope data).

encoding_sizeint

Desired size of the output encoding.

cell_typestr, optional

Type of RNN cell to use (default is ‘GRU’). Options include ‘GRU’, ‘LSTM’, etc.

num_layersint, optional

Number of RNN layers (default is 1).

devicestr, optional

Device to run the model on (default is ‘cpu’). Options include ‘cpu’ and ‘cuda’.

dropoutfloat, optional

Dropout probability (default is 0.0).

bidirectionalbool, optional

Whether the RNN is bidirectional (default is True).

permute: bool, optional

If True the input data will be permuted before passing through the model, by default False.

squeeze: bool, optional

If True, the outputs of RNN states is squeezed before passed to Linear layer. By default True.

Examples

>>> device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
>>> encoder = RnnEncoder(hidden_size=100, in_channel=6, encoding_size=320,
                         cell_type='GRU', num_layers=1, device=device,
                         dropout=0.0, bidirectional=True).to(device)
>>> element1 = torch.randn(32, 50, 6)  # Batch size: 32, Time steps: 50, Input channels: 6
>>> encoding = encoder(element1.to(device))
>>> print(encoding.shape)
torch.Size([32, 320])

Notes

  • The input tensor should have the shape (batch_size, time_steps, in_channel).

  • The output tensor will have the shape (batch_size, encoding_size).

bidirectional = True
cell_type = 'GRU'
device = 'cpu'
encoding_size
forward(x)[source]

Forward pass for the RnnEncoder.

Parameters

xtorch.Tensor

Input tensor of shape (batch_size, time_steps, in_channel).

Returns

torch.Tensor

Encoded tensor of shape (batch_size, encoding_size).

hidden_size
in_channel
nn
num_layers = 1
permute = False
rnn
squeeze = True
class minerva.models.nets.tnc.SamePadConv(in_channels, out_channels, kernel_size, dilation=1, groups=1)[source]

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will also have their parameters converted when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

Parameters:
  • in_channels (int)

  • out_channels (int)

  • kernel_size (int)

  • dilation (int)

  • groups (int)

Purpose:

Implements a convolutional layer with padding to maintain the same output size as the input.

Parameters:

  • in_channels (int):

    Number of input channels to the convolutional layer.

  • out_channels (int):

    Number of output channels from the convolutional layer.

  • kernel_size (int):

    Size of the convolutional kernel.

  • dilation (int, optional):

    Dilation factor for the convolutional layer (default: 1).

  • groups (int, optional):

    Number of blocked connections from input channels to output channels (default: 1).

conv
forward(x)[source]
receptive_field
remove = 1
class minerva.models.nets.tnc.TSEncoder(input_dims, output_dims, hidden_dims=64, depth=10, permute=False, encoder_cls=DilatedConvEncoder, encoder_cls_kwargs={})[source]

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will also have their parameters converted when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

Parameters:
  • input_dims (int)

  • output_dims (int)

  • hidden_dims (int)

  • depth (int)

  • permute (bool)

  • encoder_cls (type)

  • encoder_cls_kwargs (dict)

Encoder utilizing dilated convolutional layers for encoding sequential data.

Parameters

input_dimsint

Dimensionality of the input features.

output_dimsint

Desired dimensionality of the output features.

hidden_dimsint, optional

Number of hidden dimensions in the convolutional layers (default is 64).

depthint, optional

Number of convolutional layers (default is 10).

  • permutebool, optional

    If True the input data will be permuted before passing through the model, by default False. This should be removed after the encoder receives data in the shape (bs, channels, timesteps)

Examples

>>> device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
>>> encoder = TSEncoder(input_dims=6, output_dims=320, hidden_dims=64, depth=10).to(device)
>>> element1 = torch.randn(12, 128, 6)  # Batch size: 12, Time steps: 128, Input channels: 6
>>> encoded_features = encoder(element1.to(device))
>>> print(encoded_features.shape)
torch.Size([12, 128, 320])

Notes

  • The input tensor should have the shape (batch_size, seq_len, input_dims).

  • The output tensor will have the shape (batch_size, seq_len, output_dims).

  • If the expected output tensor is of shape (batch_size, output_dims), consider using a pooling layer.

One option is to use the MaxPoolingTransposingSqueezingAdapter adapter. at minerva/models/adapters.py

feature_extractor
forward(x, mask=None)[source]

Forward pass of the encoder.

Parameters:

  • x (torch.Tensor):

    Input tensor of shape (batch_size, seq_len, input_dims).

  • mask (str, optional):

    Type of masking to apply (default: None).

Returns:

  • torch.Tensor:

    Encoded features of shape (batch_size, seq_len, output_dims).

hidden_dims = 64
input_dims
input_fc
output_dims
permute = False
repr_dropout