minerva.models.ssl
Submodules
Classes
A Bootstrap Your Own Latent (BYOL) model for self-supervised learning. |
|
Base class for all neural network modules. |
Package Contents
- class minerva.models.ssl.BYOL(backbone=None, learning_rate=0.025, schedule=90000)[source]
Bases:
lightning.LightningModule
A Bootstrap Your Own Latent (BYOL) model for self-supervised learning.
References
Grill, J., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., … & Valko, M. (2020). “Bootstrap your own latent-a new approach to self-supervised learning.” Advances in neural information processing systems, 33, 21271-21284.
Initializes the BYOL model.
Parameters
- backbone: Optional[nn.Module]
The backbone network for feature extraction. Defaults to ResNet18.
- learning_rate: float
The learning rate for the optimizer. Defaults to 0.025.
- schedule: int
The total number of steps for cosine decay scheduling. Defaults to 90000.
- backbone
- backbone_momentum
- configure_optimizers()[source]
Configures the optimizer for the BYOL model.
Returns
- torch.optim.SGD
Optimizer with configured learning rate.
- cosine_schedule(step, max_steps, start_value, end_value, period=None)[source]
Uses cosine decay to gradually modify start_value to reach end_value.
Parameters
- stepint
Current step number.
- max_stepsint
Total number of steps.
- start_valuefloat
Starting value.
- end_valuefloat
Target value.
- periodOptional[int]
Steps over which cosine decay completes a full cycle. Defaults to max_steps.
Returns
- float
Cosine decay value.
- Parameters:
step (int)
max_steps (int)
start_value (float)
end_value (float)
period (Optional[int])
- Return type:
float
- criterion
- deactivate_requires_grad(model)[source]
Freezes the weights of the model.
Parameters
- modelnn.Module
Model to freeze.
- Parameters:
model (torch.nn.Module)
- forward(x)[source]
Forward pass for the BYOL model.
Parameters
- xTensor
Input image tensor.
Returns
- Tensor
Output tensor after passing through the backbone, projection, and prediction heads.
- Parameters:
x (torch.Tensor)
- Return type:
torch.Tensor
- forward_momentum(x)[source]
Forward pass using momentum encoder.
Parameters
- xTensor
Input image tensor.
Returns
- Tensor
Output tensor after passing through the momentum backbone and projection head.
- Parameters:
x (torch.Tensor)
- Return type:
torch.Tensor
- learning_rate = 0.025
- prediction_head
- projection_head
- projection_head_momentum
- schedule_length = 90000
- training_step(batch, batch_idx)[source]
Performs a training step for BYOL.
Parameters
- batchSequence[Tensor]
A batch of input pairs (x0, x1).
- batch_idxint
Batch index.
Returns
- Tensor
The computed loss for the current batch.
- Parameters:
batch (Sequence[torch.Tensor])
batch_idx (int)
- Return type:
torch.Tensor
- Parameters:
backbone (Optional[torch.nn.Module])
learning_rate (float)
schedule (int)
- class minerva.models.ssl.SimCLR(backbone, projection_head, flatten=True, temperature=0.5, lr=0.001)[source]
Bases:
lightning.LightningModule
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- Parameters:
backbone (torch.nn.Module)
projection_head (torch.nn.Module)
flatten (bool)
temperature (float)
lr (float)
Initializes the SimCLR model.
Parameters
- backbonenn.Module
Backbone model for feature extraction.
- projection_headnn.Module
Projection head model.
- flattenbool, optional, default=True
Whether to flatten the output of the backbone model, by default True
- temperaturefloat, optional, default=0.5
Temperature for the NT-Xent loss, by default 0.5
- lrfloat, optional, default=1e-3
Learning rate for the optimizer, by default 1e-3
- _single_step(batch)[source]
Performs a single forward and loss computation step.
Parameters
- batchTuple[Tuple[Tensor, Tensor], Any]
Input batch containing images and optional labels.
Returns
- Tensor
Computed loss for the batch.
- Parameters:
batch (Tuple[Tuple[torch.Tensor, torch.Tensor], Any])
- Return type:
torch.Tensor
- backbone
- configure_optimizers()[source]
Configures the optimizer for training.
Returns
- torch.optim.Optimizer
Optimizer instance.
- Return type:
torch.optim.Optimizer
- flatten = True
- forward(x)[source]
Forward pass through the SimCLR model.
Parameters
- xTuple[Tensor, Tensor]
Input tensor of features with shape (batch_size, input_dim).
Returns
- Tensor
Output tensor of projected features with shape (batch_size, output_dim).
- Parameters:
x (Tuple[torch.Tensor, torch.Tensor])
- loss
- lr = 0.001
- predict_step(batch, batch_idx, dataloader_idx=None)[source]
Predict step.
Parameters
- batchTuple[Tuple[Tensor, Tensor], Any]
Input batch containing images and optional labels.
- batch_idxint
Index of the current batch.
- dataloader_idxOptional[int], optional
Index of the dataloader, by default None
Returns
- Tensor
Computed loss for the batch.
- Parameters:
batch (Tuple[Tuple[torch.Tensor, torch.Tensor], Any])
batch_idx (int)
dataloader_idx (Optional[int])
- projector
- training_step(batch, batch_idx)[source]
Training step.
Parameters
- batchTuple[Tuple[Tensor, Tensor], Any]
Input batch containing images and optional labels.
- batch_idxint
Index of the current batch.
Returns
- Tensor
Computed loss for the batch.
- Parameters:
batch (Tuple[Tuple[torch.Tensor, torch.Tensor], Any])
batch_idx (int)
- Return type:
torch.Tensor
- validation_step(batch, batch_idx)[source]
Validation step.
Parameters
- batchTuple[Tuple[Tensor, Tensor], Any]
Input batch containing images and optional labels.
- batch_idxint
Index of the current batch.
Returns
- Tensor
Computed loss for the batch.
- Parameters:
batch (Tuple[Tuple[torch.Tensor, torch.Tensor], Any])
batch_idx (int)
- Return type:
torch.Tensor