minerva.models.ssl.byol

Classes

BYOL

A Bootstrap Your Own Latent (BYOL) model for self-supervised learning.

BYOLPredictionHead

Prediction head used for BYOL.

BYOLProjectionHead

Projection head used for BYOL.

ProjectionHead

Base class for all projection and prediction heads.

Module Contents

class minerva.models.ssl.byol.BYOL(backbone=None, learning_rate=0.025, schedule=90000)[source]

Bases: lightning.LightningModule

A Bootstrap Your Own Latent (BYOL) model for self-supervised learning.

References

Grill, J., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., … & Valko, M. (2020). “Bootstrap your own latent-a new approach to self-supervised learning.” Advances in neural information processing systems, 33, 21271-21284.

Initializes the BYOL model.

Parameters

backbone: Optional[nn.Module]

The backbone network for feature extraction. Defaults to ResNet18.

learning_rate: float

The learning rate for the optimizer. Defaults to 0.025.

schedule: int

The total number of steps for cosine decay scheduling. Defaults to 90000.

backbone
backbone_momentum
configure_optimizers()[source]

Configures the optimizer for the BYOL model.

Returns

torch.optim.SGD

Optimizer with configured learning rate.

cosine_schedule(step, max_steps, start_value, end_value, period=None)[source]

Uses cosine decay to gradually modify start_value to reach end_value.

Parameters

stepint

Current step number.

max_stepsint

Total number of steps.

start_valuefloat

Starting value.

end_valuefloat

Target value.

periodOptional[int]

Steps over which cosine decay completes a full cycle. Defaults to max_steps.

Returns

float

Cosine decay value.

Parameters:
  • step (int)

  • max_steps (int)

  • start_value (float)

  • end_value (float)

  • period (Optional[int])

Return type:

float

criterion
deactivate_requires_grad(model)[source]

Freezes the weights of the model.

Parameters

modelnn.Module

Model to freeze.

Parameters:

model (torch.nn.Module)

forward(x)[source]

Forward pass for the BYOL model.

Parameters

xTensor

Input image tensor.

Returns

Tensor

Output tensor after passing through the backbone, projection, and prediction heads.

Parameters:

x (torch.Tensor)

Return type:

torch.Tensor

forward_momentum(x)[source]

Forward pass using momentum encoder.

Parameters

xTensor

Input image tensor.

Returns

Tensor

Output tensor after passing through the momentum backbone and projection head.

Parameters:

x (torch.Tensor)

Return type:

torch.Tensor

learning_rate = 0.025
prediction_head
projection_head
projection_head_momentum
schedule_length = 90000
training_step(batch, batch_idx)[source]

Performs a training step for BYOL.

Parameters

batchSequence[Tensor]

A batch of input pairs (x0, x1).

batch_idxint

Batch index.

Returns

Tensor

The computed loss for the current batch.

Parameters:
  • batch (Sequence[torch.Tensor])

  • batch_idx (int)

Return type:

torch.Tensor

update_momentum(model, model_ema, m)[source]

Updates model weights using momentum.

Parameters

modelnn.Module

Original model.

model_emann.Module

Momentum model.

mfloat

Momentum factor.

Parameters:
  • model (torch.nn.Module)

  • model_ema (torch.nn.Module)

  • m (float)

Parameters:
  • backbone (Optional[torch.nn.Module])

  • learning_rate (float)

  • schedule (int)

class minerva.models.ssl.byol.BYOLPredictionHead(input_dim=256, hidden_dim=4096, output_dim=256)[source]

Bases: ProjectionHead

Prediction head used for BYOL. “This MLP consists in a linear layer with output size 4096 followed by batch normalization, rectified linear units (ReLU), and a final linear layer with output dimension 256.” [0] [0]: BYOL, 2020, https://arxiv.org/abs/2006.07733

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Parameters:
  • input_dim (int)

  • hidden_dim (int)

  • output_dim (int)

class minerva.models.ssl.byol.BYOLProjectionHead(input_dim=2048, hidden_dim=4096, output_dim=256)[source]

Bases: ProjectionHead

Projection head used for BYOL. “This MLP consists in a linear layer with output size 4096 followed by batch normalization, rectified linear units (ReLU), and a final linear layer with output dimension 256.” [0] [0]: BYOL, 2020, https://arxiv.org/abs/2006.07733

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Parameters:
  • input_dim (int)

  • hidden_dim (int)

  • output_dim (int)

avgpool
preprocess_step(x)[source]
Parameters:

x (torch.Tensor)

Return type:

torch.Tensor

class minerva.models.ssl.byol.ProjectionHead(blocks)[source]

Bases: torch.nn.Module

Base class for all projection and prediction heads.

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Parameters:

blocks (Sequence[Union[Tuple[int, int, Optional[torch.nn.Module], Optional[torch.nn.Module]], Tuple[int, int, Optional[torch.nn.Module], Optional[torch.nn.Module], bool]]])

forward(x)[source]
Parameters:

x (torch.Tensor)

Return type:

torch.Tensor

layers
preprocess_step(x)[source]
Parameters:

x (torch.Tensor)

Return type:

torch.Tensor