Source code for dasf.pipeline.executors.dask

#!/usr/bin/env python3
""" Dask executor module. """

import os
from typing import Union

try:
    import cupy as cp
    import rmm
except ImportError:  # pragma: no cover
    pass

from pathlib import Path

import dask_memusage as dmem
import networkx as nx
from dask.distributed import Client, LocalCluster
from dask_cuda import LocalCUDACluster
from dask_jobqueue import PBSCluster
from distributed.diagnostics.plugin import NannyPlugin, WorkerPlugin

from dasf.pipeline.executors.base import Executor
from dasf.pipeline.types import TaskExecutorType
from dasf.utils.funcs import (
    executor_to_string,
    get_dask_gpu_count,
    get_dask_gpu_names,
    get_worker_info,
    is_dask_gpu_supported,
    is_gpu_supported,
    set_executor_gpu,
    set_executor_multi_cpu,
    set_executor_multi_gpu,
)


[docs] def setup_dask_protocol(protocol=None): if protocol is None or protocol == "tcp": return "tcp://" if protocol == "ucx": return "ucx://" raise ValueError(f"Protocol {protocol} is not supported.")
[docs] class DaskPipelineExecutor(Executor): """ A pipeline engine based on dask data flow. Keyword arguments: address -- address of the Dask scheduler (default None). port -- port of the Dask scheduler (default 8786). local -- kicks off a new local Dask cluster (default False). use_gpu -- in conjunction with `local`, it kicks off a local CUDA Dask cluster (default False). profiler -- sets a Dask profiler. protocol -- sets the Dask protocol (default TCP) gpu_allocator -- sets which is the memory allocator for GPU (default cupy). cluster_kwargs -- extra Dask parameters like memory, processes, etc. client_kwargs -- extra Client parameters. """ def __init__( self, address=None, port=8786, local=False, use_gpu=False, profiler=None, protocol=None, gpu_allocator="cupy", cluster_kwargs=None, client_kwargs=None, ): self.address = address self.port = port if not cluster_kwargs: cluster_kwargs = dict() if not client_kwargs: client_kwargs = dict() # If address is not set, consider local local = local or (address is None and "scheduler_file" not in client_kwargs) if address: address = f"{setup_dask_protocol()}{address}:{port}" self.client = Client(address=address) elif "scheduler_file" in client_kwargs: self.client = Client(scheduler_file=client_kwargs["scheduler_file"]) elif local: if use_gpu: self.client = Client( LocalCUDACluster(**cluster_kwargs), **client_kwargs ) else: # This avoids initializing workers on GPU:0 when available os.environ["CUDA_VISIBLE_DEVICES"] = "" self.client = Client(LocalCluster(**cluster_kwargs), **client_kwargs) # Ask workers for GPUs if local and not use_gpu: self.dtype = set_executor_multi_cpu() else: # Ask workers for GPUs if is_dask_gpu_supported(): self.dtype = set_executor_multi_gpu() if gpu_allocator == "cupy": # Nothing is required yet. pass elif gpu_allocator == "rmm" and is_gpu_supported(): self.client.run(cp.cuda.set_allocator, rmm.rmm_cupy_allocator) rmm.reinitialize(managed_memory=True) cp.cuda.set_allocator(rmm.rmm_cupy_allocator) else: raise ValueError(f"'{gpu_allocator}' GPU Memory allocator is not " "known") else: self.dtype = set_executor_multi_cpu() # Share dtype attribute to client if not hasattr(self.client, "dtype"): setattr(self.client, "dtype", self.dtype) # Share which is the default backend of a cluster if not hasattr(self.client, "backend"): if self.dtype == set_executor_gpu() or \ self.dtype == set_executor_multi_gpu(): setattr(self.client, "backend", "cupy") else: setattr(self.client, "backend", "numpy") if profiler == "memusage": profiler_dir = os.path.abspath( os.path.join(str(Path.home()), "/.cache/dasf/profiler/")) os.makedirs(profiler_dir, exist_ok=True) dmem.install( self.client.cluster.scheduler, os.path.abspath(profiler_dir + "/dask-memusage"), ) @property def ngpus(self) -> int: return get_dask_gpu_count() @property def is_connected(self) -> bool: if "running" in self.client.status: return True return False @property def info(self) -> str: if self.is_connected: print("Executor is connected!") else: print("Executor not is connected!") print(f"Executor Type: {executor_to_string(self.dtype)}") print(f"Executor Backend: {self.client.backend}") if self.is_connected and self.ngpus > 0: print(f"With {self.ngpus} GPUs") print("Available GPUs:") for gpu_name in list(set(get_dask_gpu_names())): print(f"- {gpu_name}")
[docs] def execute(self, fn, *args, **kwargs): return fn(*args, **kwargs)
[docs] def register_plugin(self, plugin: Union[WorkerPlugin, NannyPlugin]): if isinstance(plugin, WorkerPlugin): self.client.register_worker_plugin(plugin) elif isinstance(plugin, NannyPlugin): self.client.register_worker_plugin(plugin, nanny=True)
[docs] def register_dataset(self, **kwargs): self.client.publish_dataset(**kwargs)
[docs] def has_dataset(self, key): return key in self.client.list_datasets()
[docs] def get_dataset(self, key): return self.client.get_dataset(name=key)
[docs] def shutdown(self, gracefully=True): if gracefully: info = get_worker_info(self.client) worker_names = [] for worker in info: worker_names.append(worker["worker"]) if worker_names: self.client.retire_workers(worker_names, close_workers=True) else: self.client.shutdown()
[docs] def close(self): self.client.close()
[docs] class DaskTasksPipelineExecutor(DaskPipelineExecutor): """ A not centric execution engine based on dask. Keyword arguments: address -- address of the Dask scheduler (default None). port -- port of the Dask scheduler (default 8786). local -- kicks off a new local Dask cluster (default False). use_gpu -- in conjunction with `local`, it kicks off a local CUDA Dask cluster (default False). profiler -- sets a Dask profiler. gpu_allocator -- sets which is the memory allocator for GPU (default cupy). cluster_kwargs -- extra Dask parameters like memory, processes, etc. client_kwargs -- extra Client parameters. """ def __init__( self, address=None, port=8786, local=False, use_gpu=True, profiler=None, protocol=None, gpu_allocator="cupy", cluster_kwargs=None, client_kwargs=None, ): super().__init__( address=address, port=port, local=local, use_gpu=use_gpu, profiler=profiler, protocol=protocol, gpu_allocator=gpu_allocator, cluster_kwargs=cluster_kwargs, client_kwargs=client_kwargs, ) # Ask workers for GPUs if use_gpu: if is_dask_gpu_supported(): self.dtype = TaskExecutorType.single_gpu else: self.dtype = TaskExecutorType.single_cpu else: self.dtype = TaskExecutorType.single_cpu # Share dtype attribute to client setattr(self.client, "dtype", self.dtype) self._tasks_map = dict()
[docs] def pre_run(self, pipeline): nodes = list(nx.topological_sort(pipeline._dag)) # TODO: we need to consider other branches for complex pipelines dag_paths = nx.all_simple_paths(pipeline._dag, nodes[0], nodes[-1]) all_paths = [] for path in dag_paths: all_paths.append(path) workers = get_worker_info(self.client) worker_idx = 0 for path in all_paths: for node in path: if node not in self._tasks_map: self._tasks_map[node] = workers[worker_idx] # Increment workers to all new path and repeat if there # are more paths to assign. if worker_idx == len(workers): worker_idx = 0 else: worker_idx += 1
[docs] def post_run(self, pipeline): pass
[docs] def execute(self, fn, *args, **kwargs): key = hash(fn) worker = self._tasks_map[key]["worker"] return self.client.submit(fn, *args, **kwargs, workers=[worker])
[docs] def register_dataset(self, **kwargs): self.client.publish_dataset(**kwargs)
[docs] def has_dataset(self, key): return key in self.client.list_datasets()
[docs] def get_dataset(self, key): return self.client.get_dataset(name=key)
[docs] def shutdown(self, gracefully=True): if gracefully: info = get_worker_info(self.client) worker_names = [] for worker in info: worker_names.append(worker["worker"]) if worker_names: self.client.retire_workers(worker_names, close_workers=True) else: self.client.shutdown()
[docs] def close(self): self.client.close()
[docs] class DaskPBSPipelineExecutor(Executor): def __init__(self, **kwargs): self.client = Client(PBSCluster(**kwargs)) # Ask workers for GPUs if is_dask_gpu_supported(): self.dtype = TaskExecutorType.multi_gpu else: self.dtype = TaskExecutorType.multi_cpu