dasf.pipeline.executors
Submodules
Classes
A pipeline engine based on dask data flow. |
|
A not centric execution engine based on dask. |
|
Package Contents
- class dasf.pipeline.executors.Executor[source]
- property is_connected: bool
- Return type:
bool
- property info: str
- Return type:
str
- class dasf.pipeline.executors.DaskPBSPipelineExecutor(**kwargs)[source]
Bases:
dasf.pipeline.executors.base.Executor
- client
- class dasf.pipeline.executors.DaskPipelineExecutor(address=None, port=8786, local=False, use_gpu=False, profiler=None, protocol=None, gpu_allocator='cupy', cluster_kwargs=None, client_kwargs=None)[source]
Bases:
dasf.pipeline.executors.base.Executor
A pipeline engine based on dask data flow.
Keyword arguments: address – address of the Dask scheduler (default None). port – port of the Dask scheduler (default 8786). local – kicks off a new local Dask cluster (default False). use_gpu – in conjunction with local, it kicks off a local CUDA Dask
cluster (default False).
profiler – sets a Dask profiler. protocol – sets the Dask protocol (default TCP) gpu_allocator – sets which is the memory allocator for GPU (default cupy). cluster_kwargs – extra Dask parameters like memory, processes, etc. client_kwargs – extra Client parameters.
- address
- port
- local
- property ngpus: int
- Return type:
int
- property is_connected: bool
- Return type:
bool
- property info: str
- Return type:
str
- class dasf.pipeline.executors.DaskTasksPipelineExecutor(address=None, port=8786, local=False, use_gpu=True, profiler=None, protocol=None, gpu_allocator='cupy', cluster_kwargs=None, client_kwargs=None)[source]
Bases:
DaskPipelineExecutor
A not centric execution engine based on dask.
Keyword arguments: address – address of the Dask scheduler (default None). port – port of the Dask scheduler (default 8786). local – kicks off a new local Dask cluster (default False). use_gpu – in conjunction with local, it kicks off a local CUDA Dask
cluster (default False).
profiler – sets a Dask profiler. gpu_allocator – sets which is the memory allocator for GPU (default cupy). cluster_kwargs – extra Dask parameters like memory, processes, etc. client_kwargs – extra Client parameters.
- _tasks_map