minerva.losses.topological_loss

Classes

AlephPersistenHomologyCalculation

Calculate persistent homology using aleph.

PersistentHomologyCalculation

TopologicalLoss

Base class for all neural network modules.

TopologicalSignatureDistance

Topological signature.

UnionFind

An implementation of a Union--Find class. The class performs path

Module Contents

class minerva.losses.topological_loss.AlephPersistenHomologyCalculation(compute_cycles, sort_selected)[source]

Calculate persistent homology using aleph.

Args:

compute_cycles: Whether to compute cycles sort_selected: Whether to sort the selected pairs using the

distance matrix (such that they are in the order of the filteration)

__call__(distance_matrix)[source]

Do PH calculation.

Args:

distance_matrix: numpy array of distances

Returns: tuple(edge_featues, cycle_features)

compute_cycles
sort_selected
class minerva.losses.topological_loss.PersistentHomologyCalculation[source]
__call__(matrix)[source]
class minerva.losses.topological_loss.TopologicalLoss(p=2)[source]

Bases: torch.nn.modules.loss._Loss

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will also have their parameters converted when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

Parameters:

p (int)

Initialize the TopologicalLoss class.

Parameters

pint, optional

Order of norm used for distance computation, by default 2

static _compute_distance_matrix(x, p=2)[source]
forward(x, x_encoded)[source]
latent_norm
p = 2
topological_signature_distance
class minerva.losses.topological_loss.TopologicalSignatureDistance(sort_selected=False, use_cycles=False, match_edges=None)[source]

Bases: torch.nn.Module

Topological signature.

Topological signature computation.

Args:

p: Order of norm used for distance computation use_cycles: Flag to indicate whether cycles should be used

or not.

static _count_matching_pairs(pairs1, pairs2)[source]
static _get_nonzero_cycles(pairs)[source]
_get_pairings(distances)[source]
_select_distances_from_pairs(distance_matrix, pairs)[source]
forward(distances1, distances2)[source]

Return topological distance of two pairwise distance matrices.

Args:

distances1: Distance matrix in space 1 distances2: Distance matrix in space 2

Returns:

distance, dict(additional outputs)

match_edges = None
static sig_error(signature1, signature2)[source]

Compute distance between two topological signatures.

signature_calculator
use_cycles = False
class minerva.losses.topological_loss.UnionFind(n_vertices)[source]

An implementation of a Union–Find class. The class performs path compression by default. It uses integers for storing one disjoint set, assuming that vertices are zero-indexed.

Initializes an empty Union–Find data structure for a given number of vertices.

_parent
find(u)[source]

Finds and returns the parent of u with respect to the hierarchy.

merge(u, v)[source]

Merges vertex u into the component of vertex v. Note the asymmetry of this operation.

roots()[source]

Generator expression for returning roots, i.e. components that are their own parents.