minerva.losses.xtent_loss
Classes
Base class for all neural network modules. |
Module Contents
- class minerva.losses.xtent_loss.NTXentLoss(temperature)[source]
Bases:
torch.nn.modules.loss._Loss
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- Parameters:
temperature (float)
The constructor of the NTXentLoss class.
Parameters
- temperature: float
The temperature of the softmax function
- criterion
- eps = 1e-08
- forward(y_0, y_1)[source]
Forward pass of the NTXentLoss class.
Based on Lightly SSL’s implementation.
Parameters
- y_0: Tensor
The first tensor to be compared
- y_1: Tensor
The second tensor to be compared
Returns
- Tensor
The loss value
- Parameters:
y_0 (torch.Tensor)
y_1 (torch.Tensor)
- Return type:
torch.Tensor
- temperature